pytorch实现卷积神经网络实验

本文详细介绍了如何在PyTorch中手写二维卷积并进行实验,使用车辆分类数据集进行训练和测试。实验包括自定义单通道和多通道卷积、自定义卷积层的构建,以及在模型中应用这些自定义组件。同时,对比了使用torch.nn模块定义的卷积模型,讨论了两者在速度和效果上的差异。文章提供了完整的代码和数据集链接供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:手写二维卷积的实现
要求:
手写二维卷积的实现,并从至少一个数据集上进行实验,这里我选取了车辆分类数据集(后面的实验都是用的车辆分类数据集),主要根据数据集的大小,手动定义二维卷积操作,如:自定义单通道卷积、自定义多通道卷积、自定义卷积层等。
实验过程:
1.1相关包的导入

1.	import torch  
2.	import numpy as np  
3.	import random  
4.	from IPython import display  
5.	from matplotlib