oneapi-搭建自己的qw机器人

🍁 作者:知识浅谈,CSDN签约讲师&博客专家,华为云云享专家,阿里云专家博主,InfoQ签约作者
📌 擅长领域:全栈工程师、爬虫、ACM算法,大数据,深度学习
💒 公众号:知识浅谈
🔥 微信:zsqtcyl 联系我领取福利

oneapi: 调用第三方apikey,统一格式
视频教程:点击这里

🎈环境准备

Centos7服务器一台,域名一个
配置低的(512m内存),自己一个人用
建议:

  • 提前创建Mysql数据库
  • 安装好宝塔面板
  • 安装好Docker

🎈开始安装

宝塔面板安装
在这里插入图片描述
安琥在那个面板之后

我们使用这个XShell工具输入命令
docker run --name one-api -d --restart always -p 3000:3000 -e TZ=Asia/Shanghai -v /home/ubuntu/data/one-api:/data justsong/one-api
在这里插入图片描述

更多oneapi疑问看这个

打开我们的oneapi:http://ip地址:3000/ 这里默认用的是3000端口的
先上效果图
在这里插入图片描述
在部署完之后,打开 OneAPI 后台面板(如果你没改端口,端口默认是 3000),使用默认账户root 密码 123456 登录管理员账号。

然后,点击渠道,添加相关信息。
在这里插入图片描述

使用硅基流动之前需要先注册:
硅基流动的注册地址:https://cloud.siliconflow.cn/i/RkP8gC3E

硅基流动的代理地址;https://api.siliconflow.cn/v1/chat/completions#
在这里插入图片描述
上面统一好格式以后,创建令牌
在这里插入图片描述
调用呢:
http://localhost:3000/v1。(如果你在云服务器上部署了 OneAPI,那么请填写你的公网地址)

以office ai为例子
在这里插入图片描述

🍚总结

大功告成,撒花致谢🎆🎇🌟,关注我不迷路,带你起飞带你富。
Writted By 知识浅谈

### 使用 LLaMA-Factory 训练 QW3 模型的方法和步骤 LLaMA-Factory 是一个用于训练和微调大语言模型的开源工具,支持多种模型架构和训练策略。以下是关于如何使用 LLaMA-Factory 训练 QW3 模型的具体方法和步骤。 #### 1. 环境准备 在开始训练之前,需要确保环境已经正确配置。以下是一些关键步骤: - 安装必要的依赖库,例如 `transformers`、`accelerate` 和 `bitsandbytes`。 - 配置 GPU 或 TPU 加速环境,以充分利用硬件资源[^1]。 ```bash pip install -r requirements.txt ``` #### 2. 数据集准备 数据集的质量直接影响模型性能。可以使用公开的数据集或自定义构建的数据集。将数据集处理为适合模型输入的格式,例如 JSONL 或 Hugging Face 的 Dataset 格式[^1]。 #### 3. 配置文件设置 LLaMA-Factory 提供了 YAML 格式的配置文件,用于定义训练参数。以下是 QW3 模型的典型配置示例: ```yaml model_name_or_path: "Qwen/qw3" output_dir: "./results/qw3-finetuned" data: dataset_name: "custom_dataset" dataset_config_name: "default" max_seq_length: 512 training: per_device_train_batch_size: 4 gradient_accumulation_steps: 8 learning_rate: 2e-5 lr_scheduler_type: "cosine" num_train_epochs: 3 weight_decay: 0.01 warmup_ratio: 0.1 logging_dir: "./logs" logging_steps: 10 save_steps: 500 save_total_limit: 3 optimization: use_gradient_checkpointing: true fp16: true ``` #### 4. 启动训练命令 根据配置文件,启动训练过程。以下是典型的训练命令: ```bash llamafactory-cli train qw3-finetuning.yaml ``` 此命令会加载配置文件中的参数,并开始训练过程[^1]。 #### 5. 显存优化技巧 为了减少显存占用,可以采用以下策略: - 启用梯度检查点(gradient checkpointing)以节省内存。 - 使用混合精度训练(bf16 或 fp16)以加速计算并降低显存消耗。 - 调整 `per_device_train_batch_size` 和 `gradient_accumulation_steps` 的组合以模拟更大的 batch size。 #### 6. 模型评估与导出 训练完成后,可以通过验证集评估模型性能。如果满意,可以将模型导出为 Hugging Face 格式以便后续部署: ```bash python export_model.py --input_dir ./results/qw3-finetuned --output_dir ./final_models/qw3-finetuned ``` #### 7. 进一步优化 根据实际需求,可以尝试不同的超参数组合或数据增强技术以进一步提升模型性能[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识浅谈

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值