程序设计的时间问题

本文讨论了程序设计竞赛中对运行时间的要求,强调了理解算法复杂度的重要性。通过例子展示了如何分析复杂度,指出减少复杂度是避免超时的关键。提到了常见的时间复杂度阶,并给出了时间复杂度与实际运行时间的估算方法,建议根据题目限制优化代码以确保在允许的时间内完成计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设计程序算法的时间限制要求

今天偶尔看到挑战程序设计竞赛一书中,运行时间的概念,过多注意了一下;

认识时间,首先要了解复杂度的概念,在分析复杂度时,要考虑它与什么成正比,并称之为算法的阶。

例如:

            for(i=0;i<n;i++)

            for ( i=0;i<n;i++ )

            for ( i=0;i<n;i++ )

                     sum+=5;

要执行这样一个循环体经历了n^3,也就是说复杂度大约是 n^3 记作O(n^3) (忽略了最小阶sum+=5,取最高阶即最大频段)

可想而知一个算法的快慢和复杂度有很大的联系;同时在做一些程序设计题目时超时也是会判错的,减少复杂度就需要在做出题目后的进一步优化;

这样就可以用O(1),O(log2 n),O(n),O(nlog2 n),O(n^2),O(n^3),O(n^4)...O(2^n);

依次增加时间复杂度 耗时增长曲线如图:

还有数值表供大家参考:

再赋值中很明显n的阶乘是用时很大的,12的阶乘2147483647就是int的最大上限了,可想而知一个算法的运行快慢和选取的复杂度有很大的关系

知道了程序的复杂度后怎么有效的判断大概用了多少时间呢?

大家先来看个对比表:

hangs 表示时间过长单位就是年 或是计算不出; 在一般的题目中要求都是3000ms ;例如nyoj 在线测评中时间限制就是3000ms 也就是3秒;

而想要粗略计算 编程是否会超时,取最大值带入复杂性通式,就可大致判断;

例如:

        考虑O(n^2)时间的算法,假设题目描述中限制条件为n<=1000,n=1000代入n^2就得到1000000。

再结合下表:(摘自:挑战程序设计竞赛)

由此可以看出1S的上限大概就是1千万左右,毕竟平时代码里循环体非常简单的情况少之又少,勉勉强强还算过关;

若是简单计算和题目限制要求相差甚多,就要考虑优化下代码了;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值