FramePack视频生成整合包,8G显存可用,支持批量生成视频,支持50系列显卡

FramePack 是最前沿的 AI 视频生成框架,以极小的硬件需求颠覆视频创作!它能在仅 6GB 笔记本 GPU 内存上,驱动 13B 模型以 30 FPS 生成超长 120 秒视频,几乎无内容限制,释放无限创意可能。

直接干货,FramePack视频生成工具整合包免费下载地址:(支持批量生成)
链接:https://pan.quark.cn/s/44086939f37b   提取码:RF7U
解压密码: www.aibl.vip

FramePack视频生成工具web页面

 FramePack视频生成工具批量生成界面

 

 FramePack的主要功能
低显存需求:仅需6GB显存即可运行,适合在笔记本电脑GPU上使用。
高效的帧生成能力:基于13B模型30fps的帧率生成数千帧视频。
快速生成:个人RTX 4090显卡的生成速度为2.5秒/帧(未优化)或1.5秒/帧(优化后)。
FramePack的技术原理
帧上下文打包:基于改变 Transformer 的 Patchify(分块)核大小,对不同重要性的帧进行不同程度的压缩。关键帧保留更多细节(如 1536 个 token),次要帧则大幅压缩(如 192 个 token),在保持重要信息的同时大幅减少显存占用。帧的重要性根据其与目标帧的时间距离来判断,越接近目标帧的输入帧被认为越重要。
抗漂移采样:引入双向记忆法,让模型在生成当前帧时既能参考最近的帧,也能回溯到初始帧的核心特征,避免漂移。
灵活的调度策略:
几何压缩:按照几何级数对帧进行压缩,适合实时生成场景。
首帧优先:在图生视频任务中,优先保留首帧的细节,确保生成的视频起点高质量。
对称压缩:对所有帧进行均衡处理,适合需要稳定连贯的视频生成场景。
计算复杂度恒定:基于上述压缩和调度策略,FramePack 实现计算复杂度的恒定化,无论生成多少帧,计算资源消耗保持不变。让模型能高效处理长视频生成任务,不会因帧数增加显著降低速度

### FramePack 模型下载及本地部署教程 #### 准备工作 在开始之前,需确认已安装 Python 和必要的开发工具链。推荐使用虚拟环境管理器(如 `venv` 或 `conda`),以便隔离依赖项。 #### 安装 FramePack 项目 访问 FramePack 的官方仓库地址[^1],克隆该项目至本地: ```bash git clone https://gitcode.com/gh_mirrors/fr/FramePack.git cd FramePack ``` 创建并激活虚拟环境(可选): ```bash python -m venv env source env/bin/activate # Linux/MacOS .\env\Scripts\activate # Windows ``` 安装所需的 Python 库: ```bash pip install -r requirements.txt ``` #### 下载预训练模型 FramePack 使用 Hugging Face Hub 提供的模型存储服务。以下是具体命令用于下载所需模型: 1. **HunyuanVideo 社区模型** ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="hunyuanvideo-community/HunyuanVideo", local_dir="./models/hunyuan_video") ``` 2. **Flux Redux BFL 模型** ```python snapshot_download(repo_id="lllyasviel/flux_redux_bfl", local_dir="./models/flux_redux_bfl") ``` 3. **FramePack I2V HY 模型** ```python snapshot_download(repo_id="lllyasviel/FramePackI2V_HY", local_dir="./models/framepack_i2v_hy") ``` 运行以上脚本后,模型文件会被保存到指定目录下(默认为当前路径下的 `./models` 文件夹)。如果需要更改目标位置,请调整 `local_dir` 参数。 #### 配置本地环境 完成模型下载后,按照 FramePack 文档中的说明配置环境变量和参数设置。通常情况下,需要编辑项目的配置文件(如 `config.yaml` 或其他 JSON/YAML 格式的配置文件),指明模型路径以及硬件加速选项(GPU/CPU)。 对于 GPU 用户,建议验证 PyTorch 是否能够检测到可用设备: ```python import torch print(torch.cuda.is_available()) # 输出 True 表示支持 CUDA 加速 ``` #### 启动应用 启动 FramePack 工具前,确保所有依赖均已正确安装且模型成功加载。执行以下命令以启动程序: ```bash python main.py --model_path ./models/ ``` 更多高级功能可以通过传递额外参数实现,详情参见文档。 --- ### 注意事项 - 如果遇到显卡驱动版本不匹配或其他技术难题,可以参考 ComfyUI 的安装指南[^2]获取通用解决方法。 - 对于低配机器用户,可能需要降低分辨率或帧率来平衡性能需求[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值