零基础入门数据挖掘 - 二手车交易价格预测

本文介绍了一个二手车交易价格预测的赛题,数据集包含超过40万个记录,涉及31个变量。任务是进行回归预测,数据分为训练集、测试集A和测试集B。评价指标包括分类准确率、精确率、召回率、F1分数、ROC曲线和AUC值,以及MSE、RMSE、MAE和MAPE等误差指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

​​​​​​​1.赛题内容

赛题以二手车市场为背景,要求选手预测二手汽车的交易价格,这是一个典型的回归问题

赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取15万条作为训练集,5万条作为测试集A,5万条作为测试集B,同时会对name、model、brand和regionCode等信息进行脱敏。

  1. 数据读取
import pandas as pd
import numpy as np

path = './data/'
## 1) 载入训练集和测试集;
Train_data = pd.read_csv(path+'train.csv', sep=' ')
Test_data = pd.read_csv(path+'testA.csv', sep=' ')
print('Train data shape:',Train_data.shape)
print('TestA data shape:',Test_data.shape)
Train_data.head()
  • 分类指标评价计算示例

import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 1]
print('ACC:',accuracy_score(y_true, y_pred))
  • acc

    分类准确率分数是指所有分类正确的百分比。分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值