滑动窗口
一图胜万言

几乎所有的滑动窗口都基于这个原型图。
窗口边界(左边界、右边界)决定着窗口大小和窗口的位移。左边界、右边界也称为“左指针”、“右指针”。
使用场景
-
只要是碰到子字符串、子数组,优先考虑的就是 滑动窗口。 -
固定长度数字求和,考虑使用。
附大神编的顺口溜

无重复字符的最长子串
-
题目:给定一个字符串,请你找出其中 不含有重复字符的 最长子串 的长度。 -
难度:中等 -
链接: LeetCode#3 -
注:本瓜真实面试遇到过两次,基础且经典。
示例 1:
输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2: 输入: "bbbbb" 输出: 1 解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。 示例 3: 输入: "pwwkew" 输出: 3 解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。 请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
双 for 循环
拿到此题,第一个思路是粗暴的双层 for 嵌套循环。
-
解题思路
-
先算从第一个字母起的最长不重复长度(这是第一个 for 循环),记录 maxLen1。 -
再算第二个字母起的最长不重复长度、第三个、第四个......第 n 个(将第 1 步重复n次,这是第二个 for 循环),记录 maxLen2、maxLen3、maxLen4......maxLenN。 -
比较[maxLen1,maxLen2,maxLen3,maxLen4......maxLenN]的最大值,即为最后结果。
-
代码实现
/**
* @param {string} s
* @return {number}
*/
var lengthOfLongestSubstring = function(s) {
let arr=s.split('');// 字符串转为数组 let maxLenArr=[];// 从每个字符起不重复的最大长度的集合,即 maxLen 集合 for(let i=0,len=arr.length;i<len;i++){// 步骤2:外层 for 循环 let norepeat=[]; for(let j=i,len=arr.length-i;j<len;j++){// 步骤1:内层 for 循环 if(norepeat.includes(arr[j])){// 判断是否有重复 break; }else{// 没重复推入数组 norepeat.push(arr[j]) } } maxLenArr.push(norepeat.length) } return Math.max(...maxLenArr); };
-
通过率:560 / 987 -
时间复杂度:O(n 2)
滑动窗口
-
解题思路
设 tmpStr 为滑动窗口,设 left 为滑动窗口的左下标。for 循环判断元素是否再滑动窗口中,如果在,则移动滑动窗口的左下标。
例:“aba”
-
tmpStr='',left=0,第一个元素"a"不在 tmpStr 中,则不移动下标; -
tmpStr='a',left=0,第二个元素"b"不在 tmpStr 中,则不移动下标; -
tmpStr='ab',left=0,第三个元素"a",此时在 tmpStr 中,则要移动下标,下标 left=tmpStr.indexOf("aba");
tmpStr 里不会存在重复的字符。
-
代码实现
/**
* @param {string} str
* @return {number}
*/
var lengthOfLongestSubstring = function(str) {
if (!str.length) return 0 let tmpStr = '' // 每次循环找到的不含重复字符的子字符串 let maxStrLen = 0 // 最大不含重复字符的子字符串的长度 let len = str.length let left = 0 // 不含重复字符的子字符串的左游标 for (let i = 0; i < len; i++) { if (tmpStr.indexOf(str[i]) !== -1) { left += (str.slice(left, i).indexOf(str[i]) + 1) continue } tmpStr = str.slice(left, i + 1) maxStrLen = Math.max(maxStrLen, tmpStr.length) } return maxStrLen }; 作者:shelleyIstar
-
通过率:100% -
时间复杂度:O(n) -
小结:这里的窗口既是滑动的,窗口长度也是会变化的。
大小为 K 且平均值大于等于阈值的子数组数目
-
题目:给你一个整数数组 arr 和两个整数 k 和 threshold 。请你返回长度为 k 且平均值大于等于 threshold 的子数组数目。 -
难度:中等 -
链接: LeetCode#1343
示例 1:
输入:arr = [2,2,2,2,5,5,5,8], k = 3, threshold = 4
输出:3
解释:子数组 [2,5,5],[5,5,5] 和 [5,5,8] 的平均值分别为 4,5 和 6 。其他长度为 3 的子数组的平均值都小于 4 (threshold 的值)。
示例 2: 输入:arr = [1,1,1,1,1], k = 1, threshold = 0 输出:5 示例 3: 输入:arr = [11,13,17,23,29,31,7,5,2,3], k = 3, threshold = 5 输出:6 解释:前 6 个长度为 3 的子数组平均值都大于 5 。注意平均值不是整数。 更多示例请移步官网。
双 for 循环?
此题明显就不适合双层 for 循环,因为既没有比大小,也没有查重。
滑动窗口
-
解题思路 此题的滑动窗口就是一个长度为 k 的数组,长度不变。也只用一遍 for 循环,顺位移动窗口,如果平均值大于等于阈值,就记录次数。 -
代码实现
/**
*
* @param {*} arr 数组
* @param {*} k 子数组长度
* @param {*} threshold 子数组平均值
*/ var numsOfsubarray = function(arr, k, threshold) { let sums = 0; // 子数组的和 let nums = 0; // 最后返回值,即符合条件的子数组个数 let len = arr.length; // 数组的长度 let target = k * threshold; // 子数组的目标和,大于等于这个值就满足条件 // 判断边界条件, 数组的长度 < 给定的子数组的长度, 必然不符合 if (len < k) return 0; // 初始子数组的和 for (let i = 0; i < k; i++) sums += arr[i]; // 如果初始子数组就满足条件,nums加1 if (sums >= target) nums++; for (let i = k; i < len; i++) { // 这两步是整个算法的关键 // 新子数组和计算,即老子数组的和减去老子数组的第一个index的值,再加上当前index的值 // 可以理解为长度为k的窗口往后移动一位 sums -= arr[i - k]; // i = 3, k = 3, 就是减去arr[0] sums += arr[i]; // 再加上arr[3] if (sums >= target) nums++; } return nums; };
-
通过率:100% -
时间复杂度:O(n) -
小结:固定长度的窗口平移实现:左边去掉的长度等于右边新增的长度,即发生了移动。
参考
本文使用 mdnice 排版