TSNE降维与可视化

t-SNE是一种强大的降维方法,它将高维数据转化为二维空间,同时兼顾局部和全局相似度,使得数据簇内分布均匀,边界清晰,尤其适合数据可视化。在深度学习中,t-SNE也可用于解析模型输出。了解更多信息可参考相关教程:t-SNE实践——sklearn教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TSNE是一种降维与可视化技术,可以将数据点之间的相似度转换为概率。在原空间(高维空间)中转化为基于高斯分布的概率;在嵌入空间(二维空间)中转化为基于t分布的概率。这使得t-SNE不仅可以关注局部(SNE只关注相邻点之间的相似度映射而忽略了全局之间的相似度映射,使得可视化后的边界不明显),还关注全局,使可视化效果更好(簇内不会过于集中,簇间边界明显)。也可以应用于深度学习中,将最后一 层得到的输出进行TSNE降维。

有兴趣的朋友可以看这篇博客:t-SNE实践——sklearn教程

https://blog.csdn.net/hustqb/article/details/80628721



"""t-SNE对手写数字进行可视化"""
import numpy as np
from sklearn.manifold import TSNE

from time import time
import matplotlib.pyplot as plt
from sklearn import datasets

def get_data():
    digits = datasets.load_digits(n_class=6)
    data = digits.data                          # (1083,64)
    label = digits.target                       # (1083,)
    n_samples, n_features = data.shape
    return data, label, n_samples, n_features


def plot_embedding(data, label, title):
    data = (data - data.min()) / (data.max() - data.min()) # 数据归一化
    fig = plt.figure()
    ax = plt.subplot(111)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值