Java面试:分布式锁与分布式事务的深度探讨
背景
本次面试围绕分布式锁和分布式事务展开,候选人是一位拥有十年Java项目研发经验和架构设计经验的资深工程师。面试官通过层层深入的提问,全面考察了候选人在分布式系统领域的技术能力和实战经验。
面试过程
第一轮:分布式锁的基础概念
面试官:请简单介绍一下分布式锁的概念及其应用场景。
候选人:分布式锁是一种在分布式系统中用于协调多个节点对共享资源进行互斥访问的机制。常见的应用场景包括秒杀系统、库存扣减等需要保证数据一致性的场景。
面试官:分布式锁的实现方式有哪些?
候选人:常见的实现方式包括基于数据库、Redis、ZooKeeper等。Redis通过SETNX命令实现,ZooKeeper通过临时有序节点实现。
面试官:Redis实现分布式锁时,如何解决死锁问题?
候选人:可以通过设置锁的过期时间(TTL)来避免死锁。同时,可以使用Redisson等框架提供的看门狗机制自动续期。
第二轮:分布式锁的高级问题
面试官:Redis分布式锁在极端情况下可能会出现什么问题?
候选人:可能会出现锁误删问题,比如线程A获取锁后因GC暂停导致锁过期,线程B获取锁后,线程A恢复并误删线程B的锁。
面试官:如何解决Redis分布式锁的误删问题?
候选人:可以在锁的值中存储唯一标识(如线程ID),删除锁时校验标识是否匹配。
面试官:ZooKeeper分布式锁相比Redis有哪些优势?
候选人:ZooKeeper的临时节点特性可以避免死锁,且其强一致性模型更适合高一致性要求的场景。
第三轮:分布式事务的基础概念
面试官:什么是分布式事务?
候选人:分布式事务是指跨多个服务或数据库的事务操作,需要保证ACID特性。
面试官:常见的分布式事务解决方案有哪些?
候选人:包括2PC、3PC、TCC、SAGA、本地消息表等。
面试官:2PC的优缺点是什么?
候选人:优点是实现简单,缺点是同步阻塞、单点故障、数据不一致风险。
第四轮:分布式事务的高级问题
面试官:TCC模式是如何工作的?
候选人:TCC分为Try、Confirm、Cancel三个阶段。Try阶段预留资源,Confirm阶段确认提交,Cancel阶段回滚。
面试官:SAGA模式的适用场景是什么?
候选人:适用于长事务场景,通过补偿机制保证最终一致性。
面试官:如何选择适合的分布式事务方案?
候选人:根据业务场景选择,高一致性要求选TCC,长事务选SAGA,简单场景选本地消息表。
问题与答案解析
问题 | 答案 | 技术点 | 应用场景 |
---|---|---|---|
分布式锁的实现方式 | Redis、ZooKeeper、数据库 | SETNX、临时节点 | 秒杀、库存扣减 |
Redis锁的误删问题 | 唯一标识校验 | 锁值存储线程ID | 高并发场景 |
分布式事务解决方案 | 2PC、TCC、SAGA | ACID、补偿机制 | 跨服务事务 |
结语
本次面试通过层层深入的提问,全面考察了候选人在分布式锁和分布式事务方面的技术能力。候选人的回答展现了扎实的理论基础和丰富的实战经验。面试官对候选人的表现给予了高度评价,认为其是团队中不可多得的技术人才。