2020年3月5日——sparkstreaming黑名单过滤

本文介绍了一个使用Apache Spark Streaming实现的黑名单过滤系统。该系统通过读取来自localhost的socket数据流,利用Spark Streaming的实时处理能力,对数据进行过滤,排除黑名单中的用户。此应用展示了如何在Spark中构建实时数据流处理任务,特别关注于黑名单过滤的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nc -lk 6789
输入数据:
20180808,zs
20180808,ls
20180808,ww

package org.apache.spark.examples.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
 * 黑名单过滤
 */



object TransformApp {
  def main(args: Array[String]): Unit = {

    val sparkConf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

    /**
     * 创建StreamingContext需要两个参数:SparkConf和batch interval
     */
    val ssc = new StreamingContext(sparkConf, Seconds(5))


    /**
     * 构建黑名单
     */
    val blacks = List("zs", "ls")
    val blacksRDD = ssc.sparkContext.parallelize(blacks).map(x => (x, true))

    val lines = ssc.socketTextStream("localhost", 6789)
    val clicklog = lines.map(x => (x.split(",")(1), x)).transform(rdd => {
      rdd.leftOuterJoin(blacksRDD)
        .filter(x=> x._2._2.getOrElse(false) != true)
        .map(x=>x._2._1)
    })

    clicklog.print()

    ssc.start()
    ssc.awaitTermination()
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值