目录
Wrapper (Recursive feature elimination,RFE)
学习目标
- 学习特征预处理、缺失值、异常值处理、数据分桶等特征处理方法;
- 学习特征交互、编码、选择的相应方法;
内容介绍
- 数据预处理
- 缺失值的填充
- 时间格式处理
- 对象类型特征转换到数值
- 异常值处理
- 基于3segama原则
- 基于箱型图
- 数据分箱
- 固定宽度分箱
- 分位数分箱
- 离散数值型数据分箱
- 连续数值型数据分箱
- 卡方分箱
- 特征交互
- 特征和特征之间组合
- 特征和特征之间衍生
- 其他特征衍生的尝试
- 特征编码
- one-hot编码
- label-encode编码
- 特征选择
- 1 Filter
- 2 Wrapper (RFE)
- 3 Embedded
代码示例
导入包并读取数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.preprocessing import MinMaxScaler
import xgboost as xgb
import lightgbm as lgb
from catboost import CatBoostRegressor
import warnings
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
warnings.filterwarnings('ignore')
data_train = pd.read_csv('../train.csv')
data_test_a = pd.read_csv('../testA.csv')
特征预处理
- 数据EDA部分我们已经了解数据的大概和某些特征分布了,数据预处理部分一般我们要处理一些EDA阶段分析出来的问题,这里介绍了数据缺失值的填充,时间格式特征的转化处理,某些对象类别特征的处理。
- 首先我们查找出数据中的类别特征和数值特征:
numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns) # 数值特征
category_fea = list(filter(lambda x: x not in numerical_fea, list(data_train.columns))) # 类别特征
label = 'isDefault' # 目标特征
numerical_fea.remove(label)
- 在比赛中数据预处理是必不可少的一部分,对于缺失值的填充往往会影响比赛的结果,在比赛中不妨尝试多种填充然后比较结果选择结果最优的一种; 比赛数据相比真实场景的数据相对要“干净”一些,但是还是会有一定的“脏”数据存在,清洗一些异常值往往会获得意想不到的效果。
缺失值填充
- 把所有缺失值替换为指定的值0:
data_train = data_train.fillna(0)
- 使用缺失值上面的值替换缺失值:
data_train = data_train.fillna(axis=0, method='ffill')
- 纵向用缺失值下面的值替换缺失值,且设置最多只填充两个连续的缺失值:
data_train = data_train.fillna(axis=0, method='bfill', limit=2)
-
查看缺失值情况:
data_train.isnull().sum()
# id 0
# loanAmnt 0
# term 0
# interestRate 0
# installment 0
# grade 0
# subGrade 0
# employmentTitle 1
# employmentLength 46799
# homeOwnership 0
# annualIncome 0
# verificationStatus 0
# issueDate 0
# isDefault 0
# purpose 0
# postCode 1
# regionCode 0
# dti 239
# delinquency_2years 0
# ficoRangeLow 0
# ficoRangeHigh 0
# openAcc 0
# pubRec 0
# pubRecBankruptcies 405
# revolBal 0
# revolUtil 531
# totalAcc 0
# initialListStatus 0
# applicationType 0
# earliesCreditLine 0
# title 1
# policyCode 0
# n0 40270
# n1 40270
# n2 40270
# n2.1 40270
# n4 33239
# n5 40270
# n6 40270
# n7 40270
# n8 40271
# n9 40270
# n10 33239
# n11 69752
# n12 40270
# n13 40270
# n14 40270
# dtype: int64
# 按照中值填充数值型特征
data_train[numerical_fea] = data_train[numerical_fea].fillna(data_train[numerical_fea].median())
data_test_a[numerical_fea] = data_test_a[numerical_fea].fillna(data_train[numerical_fea].median())
# 按照众数填充类别型特征
data_train[category_fea] = data_train[category_fea].fillna(data_train[category_fea].mode())
data_test_a[category_fea] = data_test_a[category_fea].fillna(data_train[category_fea].mode())
data_train.isnull().sum()
# id 0
# loanAmnt 0
# term 0
# interestRate 0
# installment 0
# grade 0
# subGrade 0
# employmentTitle 0
# employmentLength 46799
# homeOwnership 0
# annualIncome 0
# verificationStatus 0
# issueDate 0
# isDefault 0
# purpose 0
# postCode 0
# regionCode 0
# dti 0
# delinquency_2years 0
# ficoRangeLow 0
# ficoRangeHigh 0
# openAcc 0
# pubRec 0
# pubRecBankruptcies 0
# revolBal 0
# revolUtil 0
# totalAcc 0
# initialListStatus 0
# applicationType 0
# earliesCreditLine 0
# title 0
# policyCode 0
# n0 0
# n1 0
# n2 0
# n2.1 0
# n4 0
# n5 0
# n6 0
# n7 0
# n8 0
# n9 0
# n10 0
# n11 0
# n12 0
# n13 0
# n14 0
# dtype: int64
时间格式处理
# 转化成时间格式
for data in [data_train, data_test_a]:
data['issueDate'] = pd.to_datetime(data['issueDate'], format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
# 构造时间特征
data['issueDateDT'] = data['issueDate'].apply(lambda x: x - startdate).dt.days
data_train['employmentLength'].value_counts(dropna=False).sort_index()
# 1 year 52489
# 10+ years 262753
# 2 years 72358
# 3 years 64152
# 4 years 47985
# 5 years 50102
# 6 years 37254
# 7 years 35407
# 8 years 36192
# 9 years 30272
# < 1 year 64237
# NaN 46799
# Name: employmentLength, dtype: int64
对象类型特征转换到数值
def employmentLength_to_int(s):
if pd.isnull(s):
return s
else:
return np.int8(s.split()[0])
for data in [data_train, data_test_a]:
data['employmentLength'].replace(to_replace='10+ years', value='10 years', inplace=True)
data['employmentLength'].replace('< 1 year', '0 years', inplace=True)
data['employmentLength'] = data['employmentLength'].apply(employmentLength_to_int)
data['employmentLength'].value_counts(dropna=False).sort_index()
# 0.0 15989
# 1.0 13182
# 2.0 18207
# 3.0 16011
# 4.0 11833
# 5.0 12543
# 6.0 9328
# 7.0 8823
# 8.0 8976
# 9.0 7594
# 10.0 65772
# NaN 11742
# Name: employmentLength, dtype: int64
- 对earliesCreditLine进行预处理:
data_train['earliesCreditLine'].sample(5)
# 642880 Jun-1992
# 77423 Aug-1983
# 356008 Mar-1999
# 84346 Aug-2007
# 574182 Sep-2005
# Name: earliesCreditLine, dtype: object
for data in [data_train, data_test_a]:
data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:]))
类别特征处理
# 部分类别特征
cate_features = ['grade', 'subGrade', 'employmentTitle', 'homeOwnership', 'verificationStatus', 'purpose', 'postCode', 'regionCode', \
'applicationType', 'initialListStatus', 'title', 'policyCode']
for f in cate_features:
print(f, '类型数:', data_train[f].nunique())
# grade 类型数: 7
# subGrade 类型数: 35
# employmentTitle 类型数: 248683
# homeOwnership 类型数: 6
# verificationStatus 类型数: 3
# purpose 类型数: 14
# postCode 类型数: 932
# regionCode 类型数: 51
# applicationType 类型数: 2
# initialListStatus 类型数: 2
# title 类型数: 39644
# policyCode 类型数: 1
- 像等级这种类别特征,是有优先级的可以labelencode或者自映射:
for data in [data_train, data_test_a]:
data['grade'] = data['grade'].map({'A': 1,'B': 2,'C': 3,'D': 4,'E': 5,'F': 6,'G': 7})
# 类型数在2之上,又不是高维稀疏的,且纯分类特征
for data in [data_train, data_test_a]:
data = pd.get_dummies(data, columns=['subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)
异常值处理
- 当你发现异常值后,一定要先分清是什么原因导致的异常值,然后再考虑如何处理。首先,如果这一异常值并不代表一种规律性的,而是极其偶然的现象,或者说你并不想研究这种偶然的现象,这时可以将其删除。其次,如果异常值存在且代表了一种真实存在的现象,那就不能随便删除。在现有的欺诈场景中很多时候欺诈数据本身相对于正常数据来说就是异常的,我们要把这些异常点纳入,重新拟合模型,研究其规律。能用监督的用监督模型,不能用的还可以考虑用异常检测的算法来做。
- 注意test的数据不能删。
检测异常的方法一:均方差
- 在统计学中,如果一个数据分布近似正态,那么大约 68% 的数据值会在均值的一个标准差范围内,大约 95% 会在两个标准差范围内,大约 99.7% 会在三个标准差范围内。
- 得到特征的异常值后可以进一步分析变量异常值和目标变量的关系:
def find_outliers_by_3segama(data, fea):
data_std = np.std(data[fea])
data_mean = np.mean(data[fea])
outliers_cut_off = data_std * 3
lower_rule = data_mean - outliers_cut_off
upper_rule = data_mean + outliers_cut_off
data[fea + '_outliers'] = data[fea].apply(lambda x: str('异常值') if x > upper_rule or x < lower_rule else '正常值')
return data
data_train = data_train.copy()
for fea in numerical_fea:
data_train = find_outliers_by_3segama(data_train, fea)
print(data_train[fea + '_outliers'].value_counts())
print(data_train.groupby(fea + '_outliers')['isDefault'].sum())
print('*' * 10)
# 正常值 800000
# Name: id_outliers, dtype: int64
# id_outliers
# 正常值 159610
# Name: isDefault, dtype: int64
# **********
# 正常值 800000
# Name: loanAmnt_outliers, dtype: int64
# loanAmnt_outliers
# 正常值 159610
# Name: isDefault, dtype: int64
# **********
# 正常值 800000
# Name: term_outliers, dtype: int64
# term_outliers
# 正常值 159610
# Name: isDefault, dtype: int64
# **********
# 正常值 794259
# 异常值 5741
# Name: interestRate_outliers, dtype: int64
# interestRate_outliers
# 异常值 2916
# 正常值 156694
# Name: isDefault, dtype: int64
# **********
# 正常值 792046
# 异常值 7954
# Name: installment_outliers, dtype: int64
# installment_outliers
# 异常值 2152
# 正常值 157458
# Name: isDefault, dtype: int64
# **********
# 正常值 800000
# Name: employmentTitle_outliers, dtype: int64
# employmentTitle_outliers
# 正常值 159610
# Name: isDefault, dtype: int64
# **********
# 正常值 799701
# 异常值 299
# Name: homeOwnership_outliers, dtype: int64
# homeOwnership_outliers
# 异常值 62
# 正常值 159548
# Name: isDefault, dtype: int64
# **********
# 正常值 793973
# 异常值 6027
# Name: annualIncome_outliers, dtype: int64
# annualIncome_outliers
# 异常值 756
# 正常值 158854
# Name: isDefault, dtype: int64
# **********
# 正常值 800000
# Name: verificationStatus_outliers, dtype: int64
# verificationStatus_outliers
# 正常值 159610
# Name: isDefault, dtype: int64
# **********
# 正常值 783003
# 异常值 16997
# Name: purpose_outliers, dtype: int64
# purpose_outliers
# 异常值 3635
# 正常值 155975
# Name: isDefault, dtype: int64
# **********
# 正常值 798931
# 异常值 1069
# Name: postCode_outliers, dtype: int64
# postCode_outliers
# 异常值 221
# 正常值 159389
# Name: isDefault, dtype: int64
# **********
# 正常值 799994
# 异常值 6
# Name: regionCode_outliers, dtype: int64
# regionCode_outliers
# 异常值 1
# 正常值 159609
# Name: isDefault, dtype: int64
# **********
# 正常值 798440
# 异常值 1560
# Name: dti_outliers, dtype: int64
# dti_outliers
# 异常值 466
# 正常值 159144
# Name: isDefault, dtype: int64
# **********
# 正常值 778245
# 异常值 21755
# Name: delinquency_2years_outliers, dtype: int64
# delinquency_2years_outliers
# 异常值 5089
# 正常值 154521
# Name: isDefault, dtype: int64
# **********
# 正常值 788261
# 异常值 11739
# Name: ficoRangeLow_outliers, dtype: int64
# ficoRangeLow_outliers
# 异常值 778
# 正常值 158832
# Name: isDefault, dtype: int64
# **********
# 正常值 788261
# 异常值 11739
# Name: ficoRangeHigh_outliers, dtype: int64
# ficoRangeHigh_outliers
# 异常值 778
# 正常值 158832
# Name: isDefault, dtype: int64
# **********
# 正常值 790889
# 异常值 9111
# Name: openAcc_outliers, dtype: int64
# openAcc_outliers
# 异常值 2195
# 正常值 157415
# Name: isDefault, dtype: int64
# **********
# 正常值 792471
# 异常值 7529
# Name: pubRec_outliers, dtype: int64
# pubRec_outliers
# 异常值 1701
# 正常值 157909
# Name: isDefault, dtype: int64
# **********
# 正常值 794120
# 异常值 5880
# Name: pubRecBankruptcies_outliers, dtype: int64
# pubRecBankruptcies_outliers
# 异常值 1423
# 正常值 158187
# Name: isDefault, dtype: int64
# **********
# 正常值 790001
# 异常值 9999
# Name: revolBal_outliers, dtype: int64
# revolBal_outliers
# 异常值 1359
# 正常值 158251
# Name: isDefault, dtype: int64
# **********
# 正常值 799948
# 异常值 52
# Name: revolUtil_outliers, dtype: int64
# revolUtil_outliers
# 异常值 23
# 正常值 159587
# Name: isDefault, dtype: int64
# **********
# 正常值 791663
# 异常值 8337
# Name: totalAcc_outliers, dtype: int64
# totalAcc_outliers
# 异常值 1668
# 正常值 157942
# Name: isDefault, dtype: int64
# **********
# 正常值 800000
# Name: initialListStatus_outliers, dtype: int64
# initialListStatus_outliers
# 正常值 159610
# Name: isDefault, dtype: int64
# **********
# 正常值 784586
# 异常值 15414
# Name: applicationType_outliers, dtype: int64
# applicationType_outliers
# 异常值 3875
# 正常值 155735
# Name: isDefault, dtype: int64
# **********
# 正常值 775134
# 异常值 24866
# Name: title_outliers, dtype: int64
# title_outliers
# 异常值 3900
# 正常值 155710
# Name: isDefault, dtype: int64
# **********
# 正常值 800000
# Name: policyCode_outliers, dtype: int64
# policyCode_outliers
# 正常值 159610
# Name: isDefault, dtype: int64
# **********
# 正常值 782773
# 异常值 17227
# Name: n0_outliers, dtype: int64
# n0_outliers
# 异常值 3485
# 正常值 156125
# Name: isDefault, dtype: int64
# **********
# 正常值 790500
# 异常值 9500
# Name: n1_outliers, dtype: int64
# n1_outliers
# 异常值 2491
# 正常值 157119
# Name: isDefault, dtype: int64
# **********
# 正常值 789067
# 异常值 10933
# Name: n2_outliers, dtype: int64
# n2_outliers
# 异常值 3205
# 正常值 156405
# Name: isDefault, dtype: int64
# **********
# 正常值 789067
# 异常值 10933
# Name: n2.1_outliers, dtype: int64
# n2.1_outliers
# 异常值 3205
# 正常值 156405
# Name: isDefault, dtype: int64
# **********
# 正常值 788660
# 异常值 11340
# Name: n4_outliers, dtype: int64
# n4_outliers
# 异常值 2476
# 正常值 157134
# Name: isDefault, dtype: int64
# **********
# 正常值 790355
# 异常值 9645
# Name: n5_outliers, dtype: int64
# n5_outliers
# 异常值 1858
# 正常值 157752
# Name: isDefault, dtype: int64
# **********
# 正常值 786006
# 异常值 13994
# Name: n6_outliers, dtype: int64
# n6_outliers
# 异常值 3182
# 正常值 156428
# Name: isDefault, dtype: int64
# **********
# 正常值 788430
# 异常值 11570
# Name: n7_outliers, dtype: int64
# n7_outliers
# 异常值 2746
# 正常值 156864
# Name: isDefault, dtype: int64
# **********
# 正常值 789625
# 异常值 10375
# Name: n8_outliers, dtype: int64
# n8_outliers
# 异常值 2131
# 正常值 157479
# Name: isDefault, dtype: int64
# **********
# 正常值 786384
# 异常值 13616
# Name: n9_outliers, dtype: int64
# n9_outliers
# 异常值 3953
# 正常值 155657
# Name: isDefault, dtype: int64
# **********
# 正常值 788979
# 异常值 11021
# Name: n10_outliers, dtype: int64
# n10_outliers
# 异常值 2639
# 正常值 156971
# Name: isDefault, dtype: int64
# **********
# 正常值 799434
# 异常值 566
# Name: n11_outliers, dtype: int64
# n11_outliers
# 异常值 112
# 正常值 159498
# Name: isDefault, dtype: int64
# **********
# 正常值 797585
# 异常值 2415
# Name: n12_outliers, dtype: int64
# n12_outliers
# 异常值 545
# 正常值 159065
# Name: isDefault, dtype: int64
# **********
# 正常值 788907
# 异常值 11093
# Name: n13_outliers, dtype: int64
# n13_outliers
# 异常值 2482
# 正常值 157128
# Name: isDefault, dtype: int64
# **********
# 正常值 788884
# 异常值 11116
# Name: n14_outliers, dtype: int64
# n14_outliers
# 异常值 3364
# 正常值 156246
# Name: isDefault, dtype: int64
# **********
# 删除异常值
for fea in numerical_fea:
data_train = data_train[data_train[fea + '_outliers'] == '正常值']
data_train = data_train.reset_index(drop=True)
检测异常的方法二:箱型图
- 总结一句话:四分位数会将数据分为三个点和四个区间,IQR = Q3 -Q1,下触须=Q1 − 1.5x IQR,上触须=Q3 + 1.5x IQR;
数据分桶
- 特征分桶的目的:
- 从模型效果上来看,特征分桶主要是为了降低变量的复杂性,减少变量噪音对模型的影响,提高自变量和因变量的相关度。从而使模型更加稳定。
- 数据分桶的对象:
- 将连续变量离散化
- 将多状态的离散变量合并成少状态
- 分桶的原因:
- 数据特征内的值跨度可能比较大,对有监督和无监督中如k-均值聚类它使用欧氏距离作为相似度函数来测量数据点之间的相似度。都会造成大吃小的影响,其中一种解决方法是对计数值进行区间量化即数据分桶也叫做数据分箱,然后使用量化后的结果。
- 分桶的优点:
- 处理缺失值:当数据源可能存在缺失值,此时可以把null单独作为一个分桶。
- 处理异常值:当数据中存在离群点时,可以把其通过分桶离散化处理,从而提高变量的鲁棒性(抗干扰能力)。例如,age若出现200这种异常值,可分入“age > 60”这个分桶里,排除影响。
- 业务解释性:我们习惯于线性判断变量的作用,当x越来越大,y就越来越大。但实际x与y之间经常存在着非线性关系,此时可经过WOE变换。
- 特别要注意一下分桶的基本原则:
- 最小分桶占比不低于5%
- 桶内不能全部是好数据
- 连续桶单调
固定宽度分桶
- 当数值横跨多个数量级时,最好按照 10 的幂(或任何常数的幂)来进行分组。固定宽度分桶非常容易计算,但如果计数值中有比较大的缺口,就会产生很多没有任何数据的空桶。
# 通过除法映射到间隔均匀的分桶中,每个分桶的取值范围都是loanAmnt/1000
data['loanAmnt_bin1'] = np.floor_divide(data['loanAmnt'], 1000)
data['loanAmnt_bin1']
# 0 14.0
# 1 20.0
# 2 12.0
# 3 17.0
# 4 35.0
# ...
# 199995 7.0
# 199996 6.0
# 199997 14.0
# 199998 8.0
# 199999 8.0
# Name: loanAmnt_bin1, Length: 200000, dtype: float64
# 通过对数函数映射到指数宽度分桶
data['loanAmnt_bin2'] = np.floor(np.log10(data['loanAmnt']))
data['loanAmnt_bin2']
# 0 4.0
# 1 4.0
# 2 4.0
# 3 4.0
# 4 4.0
# ...
# 199995 3.0
# 199996 3.0
# 199997 4.0
# 199998 3.0
# 199999 3.0
# Name: loanAmnt_bin2, Length: 200000, dtype: float64
分位数分桶
data['loanAmnt_bin3'] = pd.qcut(data['loanAmnt'], 10, labels=False)
data['loanAmnt_bin3']
# 0 5
# 1 7
# 2 4
# 3 6
# 4 9
# ..
# 199995 2
# 199996 1
# 199997 5
# 199998 2
# 199999 2
# Name: loanAmnt_bin3, Length: 200000, dtype: int64
特征交互
- 交互特征的构造非常简单,使用起来却代价不菲。如果线性模型中包含有交互特征对,那它的训练时间和评分时间就会从 O(n) 增加到 O(n2),其中 n 是单一特征的数量。
for col in ['grade', 'subGrade']:
temp_dict = data_train.groupby([col])['isDefault'].agg(['mean']).reset_index().rename(columns={'mean': col + '_target_mean'})
temp_dict.index = temp_dict[col].values
temp_dict = temp_dict[col + '_target_mean'].to_dict()
data_train[col + '_target_mean'] = data_train[col].map(temp_dict)
data_test_a[col + '_target_mean'] = data_test_a[col].map(temp_dict)
# 其他衍生变量 mean 和 std
for df in [data_train, data_test_a]:
for item in ['n0','n1','n2','n2.1','n4','n5','n6','n7','n8','n9','n10','n11','n12','n13','n14']:
df['grade_to_mean_' + item] = df['grade'] / df.groupby([item])['grade'].transform('mean')
df['grade_to_std_' + item] = df['grade'] / df.groupby([item])['grade'].transform('std')
特征编码
labelEncode 直接放入树模型中
# label-encode: subGrade,postCode,title
# 高维类别特征需要进行转换
for col in tqdm(['employmentTitle', 'postCode', 'title', 'subGrade']):
le = LabelEncoder()
le.fit(list(data_train[col].astype(str).values) + list(data_test_a[col].astype(str).values))
data_train[col] = le.transform(list(data_train[col].astype(str).values))
data_test_a[col] = le.transform(list(data_test_a[col].astype(str).values))
print('Label Encoding 完成')
# 100%|██████████| 4/4 [00:07<00:00, 1.76s/it]
# Label Encoding 完成
逻辑回归等模型要单独增加的特征工程
- 对特征做归一化,去除相关性高的特征
- 归一化目的是让训练过程更好更快的收敛,避免特征大吃小的问题
- 去除相关性是增加模型的可解释性,加快预测过程。
# 举例归一化过程
# 伪代码
for fea in [要归一化的特征列表]:
data[fea] = ((data[fea] - np.min(data[fea])) / (np.max(data[fea]) - np.min(data[fea])))
特征选择
- 特征选择技术可以精简掉无用的特征,以降低最终模型的复杂性,它的最终目的是得到一个简约模型,在不降低预测准确率或对预测准确率影响不大的情况下提高计算速度。特征选择不是为了减少训练时间(实际上,一些技术会增加总体训练时间),而是为了减少模型评分时间。
Filter
方差选择法
- 方差选择法中,先要计算各个特征的方差,然后根据设定的阈值,选择方差大于阈值的特征
from sklearn.feature_selection import VarianceThreshold
# 其中参数threshold为方差的阈值
VarianceThreshold(threshold=3).fit_transform(train, target_train)
相关系数法
- Pearson 相关系数是一种最简单的,可以帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性。 结果的取值区间为 [-1,1] , -1 表示完全的负相关, +1表示完全的正相关,0 表示没有线性相关。
from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
# 选择K个最好的特征,返回选择特征后的数据
# 第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,
# 输出二元组(评分,P值)的数组,数组第i项为第i个特征的评分和P值。在此定义为计算相关系数
# 参数k为选择的特征个数
SelectKBest(k=5).fit_transform(train, target_train)
卡方检验
- 经典的卡方检验是用于检验自变量对因变量的相关性。 假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距。 其统计量如下: χ2=∑(A−T)2T,其中A为实际值,T为理论值
- 注:卡方只能运用在正定矩阵上,否则会报错Input X must be non-negative
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
# 参数k为选择的特征个数
SelectKBest(chi2, k=5).fit_transform(train, target_train)
互信息法
- 经典的互信息也是评价自变量对因变量的相关性的。 在feature_selection库的SelectKBest类结合最大信息系数法可以用于选择特征,相关代码如下:
from sklearn.feature_selection import SelectKBest
from minepy import MINE
# 由于MINE的设计不是函数式的,定义mic方法将其作为函数式的,
# 返回一个二元组,二元组的第2项设置成固定的P值0.5
def mic(x, y):
m = MINE()
m.compute_score(x, y)
return (m.mic(), 0.5)
# 参数k为选择的特征个数
SelectKBest(lambda X, Y: array(map(lambda x: mic(x, Y), X.T)).T, k=2).fit_transform(train, target_train)
Wrapper (Recursive feature elimination,RFE)
- 递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。 在feature_selection库的RFE类可以用于选择特征,相关代码如下(以逻辑回归为例):
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
# 递归特征消除法,返回特征选择后的数据
# 参数estimator为基模型
# 参数n_features_to_select为选择的特征个数
RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(train, target_train)
Embedded
- 基于惩罚项的特征选择法使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。 在feature_selection库的SelectFromModel类结合逻辑回归模型可以用于选择特征,相关代码如下:
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
# 带L1惩罚项的逻辑回归作为基模型的特征选择
SelectFromModel(LogisticRegression(penalty="l1", C=0.1)).fit_transform(train, target_train)
- 基于树模型的特征选择 树模型中GBDT也可用来作为基模型进行特征选择。 在feature_selection库的SelectFromModel类结合GBDT模型可以用于选择特征,相关代码如下:
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingClassifier
# GBDT作为基模型的特征选择
SelectFromModel(GradientBoostingClassifier()).fit_transform(train, target_train)
- 本数据集中我们删除非入模特征后,并对缺失值填充,然后用计算协方差的方式看一下特征间相关性,然后进行模型训练
# 删除不需要的数据
for data in [data_train, data_test_a]:
data.drop(['issueDate','id'], axis=1, inplace=True)
# 纵向用缺失值上面的值替换缺失值
data_train = data_train.fillna(axis=0, method='ffill')
x_train = data_train.drop(['isDefault'], axis=1)
# 计算协方差
data_corr = x_train.corrwith(data_train.isDefault) # 计算相关性
result = pd.DataFrame(columns=['features', 'corr'])
result['features'] = data_corr.index
result['corr'] = data_corr.values
# 当然也可以直接看图
data_numeric = data_train[numerical_fea]
correlation = data_numeric.corr()
f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True, vmax=0.8)
features = [f for f in data_train.columns if f not in ['id','issueDate','isDefault'] and '_outliers' not in f]
x_train = data_train[features]
x_test = data_test_a[features]
y_train = data_train['isDefault']
def cv_model(clf, train_x, train_y, test_x, clf_name):
folds = 5
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
train = np.zeros(train_x.shape[0])
test = np.zeros(test_x.shape[0])
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
print('************************************ {} ************************************'.format(str(i+1)))
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
if clf_name == "lgb":
train_matrix = clf.Dataset(trn_x, label=trn_y)
valid_matrix = clf.Dataset(val_x, label=val_y)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'min_child_weight': 5,
'num_leaves': 2 ** 5,
'lambda_l2': 10,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 4,
'learning_rate': 0.1,
'seed': 2020,
'nthread': 28,
'n_jobs':24,
'silent': True,
'verbose': -1,
}
model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], verbose_eval=200,early_stopping_rounds=200)
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_x, num_iteration=model.best_iteration)
# print(list(sorted(zip(features, model.feature_importance("gain")), key=lambda x: x[1], reverse=True))[:20])
if clf_name == "xgb":
train_matrix = clf.DMatrix(trn_x , label=trn_y)
valid_matrix = clf.DMatrix(val_x , label=val_y)
params = {'booster': 'gbtree',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'gamma': 1,
'min_child_weight': 1.5,
'max_depth': 5,
'lambda': 10,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 0.7,
'eta': 0.04,
'tree_method': 'exact',
'seed': 2020,
'nthread': 36,
"silent": True,
}
watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
model = clf.train(params, train_matrix, num_boost_round=50000, evals=watchlist, verbose_eval=200, early_stopping_rounds=200)
val_pred = model.predict(valid_matrix, ntree_limit=model.best_ntree_limit)
test_pred = model.predict(test_x , ntree_limit=model.best_ntree_limit)
if clf_name == "cat":
params = {'learning_rate': 0.05, 'depth': 5, 'l2_leaf_reg': 10, 'bootstrap_type': 'Bernoulli',
'od_type': 'Iter', 'od_wait': 50, 'random_seed': 11, 'allow_writing_files': False}
model = clf(iterations=20000, **params)
model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
cat_features=[], use_best_model=True, verbose=500)
val_pred = model.predict(val_x)
test_pred = model.predict(test_x)
train[valid_index] = val_pred
test = test_pred / kf.n_splits
cv_scores.append(roc_auc_score(val_y, val_pred))
print(cv_scores)
print("%s_scotrainre_list:" % clf_name, cv_scores)
print("%s_score_mean:" % clf_name, np.mean(cv_scores))
print("%s_score_std:" % clf_name, np.std(cv_scores))
return train, test
def lgb_model(x_train, y_train, x_test):
lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb")
return lgb_train, lgb_test
def xgb_model(x_train, y_train, x_test):
xgb_train, xgb_test = cv_model(xgb, x_train, y_train, x_test, "xgb")
return xgb_train, xgb_test
def cat_model(x_train, y_train, x_test):
cat_train, cat_test = cv_model(CatBoostRegressor, x_train, y_train, x_test, "cat")
return cat_train, cat_test
lgb_train, lgb_test = lgb_model(x_train, y_train, x_test)
# ************************************ 1 ************************************
# [LightGBM] [Warning] num_threads is set with n_jobs=24, nthread=28 will be ignored. Current value: num_threads=24
# [LightGBM] [Warning] Unknown parameter: silent
# Training until validation scores don't improve for 200 rounds
# [200] training's auc: 0.749114 valid_1's auc: 0.729275
# [400] training's auc: 0.764716 valid_1's auc: 0.730125
# [600] training's auc: 0.778489 valid_1's auc: 0.729928
# Early stopping, best iteration is:
# [446] training's auc: 0.768137 valid_1's auc: 0.730186
# [0.7301862239949224]
# ************************************ 2 ************************************
# [LightGBM] [Warning] num_threads is set with n_jobs=24, nthread=28 will be ignored. Current value: num_threads=24
# [LightGBM] [Warning] Unknown parameter: silent
# Training until validation scores don't improve for 200 rounds
# [200] training's auc: 0.748999 valid_1's auc: 0.731035
# [400] training's auc: 0.764879 valid_1's auc: 0.731436
# [600] training's auc: 0.778506 valid_1's auc: 0.730823
# Early stopping, best iteration is:
# [414] training's auc: 0.765823 valid_1's auc: 0.731478
# [0.7301862239949224, 0.7314779648434573]
# ************************************ 3 ************************************
# [LightGBM] [Warning] num_threads is set with n_jobs=24, nthread=28 will be ignored. Current value: num_threads=24
# [LightGBM] [Warning] Unknown parameter: silent
# Training until validation scores don't improve for 200 rounds
# [200] training's auc: 0.748145 valid_1's auc: 0.73253
# [400] training's auc: 0.763814 valid_1's auc: 0.733272
# [600] training's auc: 0.777895 valid_1's auc: 0.733354
# Early stopping, best iteration is:
# [475] training's auc: 0.769215 valid_1's auc: 0.73355
# [0.7301862239949224, 0.7314779648434573, 0.7335502065719879]
# ************************************ 4 ************************************
# [LightGBM] [Warning] num_threads is set with n_jobs=24, nthread=28 will be ignored. Current value: num_threads=24
# [LightGBM] [Warning] Unknown parameter: silent
# Training until validation scores don't improve for 200 rounds
# [200] training's auc: 0.749417 valid_1's auc: 0.727507
# [400] training's auc: 0.765066 valid_1's auc: 0.728261
# Early stopping, best iteration is:
# [353] training's auc: 0.761647 valid_1's auc: 0.728349
# [0.7301862239949224, 0.7314779648434573, 0.7335502065719879, 0.7283491938614568]
# ************************************ 5 ************************************
# [LightGBM] [Warning] num_threads is set with n_jobs=24, nthread=28 will be ignored. Current value: num_threads=24
# [LightGBM] [Warning] Unknown parameter: silent
# Training until validation scores don't improve for 200 rounds
# [200] training's auc: 0.748562 valid_1's auc: 0.73262
# [400] training's auc: 0.764493 valid_1's auc: 0.733365
# Early stopping, best iteration is:
# [394] training's auc: 0.764109 valid_1's auc: 0.733381
# [0.7301862239949224, 0.7314779648434573, 0.7335502065719879, 0.7283491938614568, 0.7333810157041901]
# lgb_scotrainre_list: [0.7301862239949224, 0.7314779648434573, 0.7335502065719879, 0.7283491938614568, 0.7333810157041901]
# lgb_score_mean: 0.7313889209952029
# lgb_score_std: 0.001966415347937543
lgb_train, lgb_test = xgb_model(x_train, y_train, x_test)
# ************************************ 1 ************************************
# [15:02:32] WARNING: ../src/learner.cc:516:
# Parameters: { silent } might not be used.
# This may not be accurate due to some parameters are only used in language bindings but
# passed down to XGBoost core. Or some parameters are not used but slip through this
# verification. Please open an issue if you find above cases.
# [0] train-auc:0.69713 eval-auc:0.69580
# Multiple eval metrics have been passed: 'eval-auc' will be used for early stopping.
# Will train until eval-auc hasn't improved in 200 rounds.
# [200] train-auc:0.73103 eval-auc:0.72371
# [400] train-auc:0.74040 eval-auc:0.72807
# [600] train-auc:0.74624 eval-auc:0.72966
# [800] train-auc:0.75132 eval-auc:0.73055
# [1000] train-auc:0.75580 eval-auc:0.73101
# [1200] train-auc:0.76004 eval-auc:0.73127
# [1400] train-auc:0.76409 eval-auc:0.73156
# [1600] train-auc:0.76791 eval-auc:0.73169
# [1800] train-auc:0.77156 eval-auc:0.73173
# [2000] train-auc:0.77506 eval-auc:0.73167
# Stopping. Best iteration:
# [1852] train-auc:0.77251 eval-auc:0.73177
# [0.731769339538683]
# ************************************ 2 ************************************
# [15:07:16] WARNING: ../src/learner.cc:516:
# Parameters: { silent } might not be used.
# This may not be accurate due to some parameters are only used in language bindings but
# passed down to XGBoost core. Or some parameters are not used but slip through this
# verification. Please open an issue if you find above cases.
# [0] train-auc:0.69687 eval-auc:0.69574
# Multiple eval metrics have been passed: 'eval-auc' will be used for early stopping.
# Will train until eval-auc hasn't improved in 200 rounds.
# [200] train-auc:0.73078 eval-auc:0.72640
# [400] train-auc:0.74020 eval-auc:0.73023
# [600] train-auc:0.74605 eval-auc:0.73156
# [800] train-auc:0.75114 eval-auc:0.73231
# [1000] train-auc:0.75562 eval-auc:0.73275
# [1200] train-auc:0.75987 eval-auc:0.73310
# [1400] train-auc:0.76372 eval-auc:0.73317
# [1600] train-auc:0.76757 eval-auc:0.73330
# [1800] train-auc:0.77123 eval-auc:0.73335
# [2000] train-auc:0.77484 eval-auc:0.73339
# Stopping. Best iteration:
# [1829] train-auc:0.77173 eval-auc:0.73340
# [0.731769339538683, 0.733395913606802]
# ************************************ 3 ************************************
# [15:11:52] WARNING: ../src/learner.cc:516:
# Parameters: { silent } might not be used.
# This may not be accurate due to some parameters are only used in language bindings but
# passed down to XGBoost core. Or some parameters are not used but slip through this
# verification. Please open an issue if you find above cases.
# [0] train-auc:0.69730 eval-auc:0.69647
# Multiple eval metrics have been passed: 'eval-auc' will be used for early stopping.
# Will train until eval-auc hasn't improved in 200 rounds.
# [200] train-auc:0.73072 eval-auc:0.72604
# [400] train-auc:0.73965 eval-auc:0.73076
# [600] train-auc:0.74548 eval-auc:0.73241
# [800] train-auc:0.75050 eval-auc:0.73356
# [1000] train-auc:0.75501 eval-auc:0.73416
# [1200] train-auc:0.75898 eval-auc:0.73460
# [1400] train-auc:0.76303 eval-auc:0.73487
# [1600] train-auc:0.76689 eval-auc:0.73507
# [1800] train-auc:0.77059 eval-auc:0.73507
# Stopping. Best iteration:
# [1703] train-auc:0.76871 eval-auc:0.73515
# [0.731769339538683, 0.733395913606802, 0.7351456720593506]
# ************************************ 4 ************************************
# [15:16:15] WARNING: ../src/learner.cc:516:
# Parameters: { silent } might not be used.
# This may not be accurate due to some parameters are only used in language bindings but
# passed down to XGBoost core. Or some parameters are not used but slip through this
# verification. Please open an issue if you find above cases.
# [0] train-auc:0.69737 eval-auc:0.69375
# Multiple eval metrics have been passed: 'eval-auc' will be used for early stopping.
# Will train until eval-auc hasn't improved in 200 rounds.
# [200] train-auc:0.73148 eval-auc:0.72250
# [400] train-auc:0.74044 eval-auc:0.72639
# [600] train-auc:0.74649 eval-auc:0.72804
# [800] train-auc:0.75154 eval-auc:0.72887
# [1000] train-auc:0.75598 eval-auc:0.72934
# [1200] train-auc:0.75997 eval-auc:0.72954
# [1400] train-auc:0.76401 eval-auc:0.72977
# [1600] train-auc:0.76793 eval-auc:0.72989
# [1800] train-auc:0.77159 eval-auc:0.72993
# [2000] train-auc:0.77511 eval-auc:0.73002
# [2200] train-auc:0.77850 eval-auc:0.72996
# Stopping. Best iteration:
# [2011] train-auc:0.77531 eval-auc:0.73004
# [0.731769339538683, 0.733395913606802, 0.7351456720593506, 0.7300361842852358]
# ************************************ 5 ************************************
# [15:21:18] WARNING: ../src/learner.cc:516:
# Parameters: { silent } might not be used.
# This may not be accurate due to some parameters are only used in language bindings but
# passed down to XGBoost core. Or some parameters are not used but slip through this
# verification. Please open an issue if you find above cases.
# [0] train-auc:0.69647 eval-auc:0.69701
# Multiple eval metrics have been passed: 'eval-auc' will be used for early stopping.
# Will train until eval-auc hasn't improved in 200 rounds.
# [200] train-auc:0.73059 eval-auc:0.72675
# [400] train-auc:0.73972 eval-auc:0.73089
# [600] train-auc:0.74589 eval-auc:0.73256
# [800] train-auc:0.75073 eval-auc:0.73347
# [1000] train-auc:0.75523 eval-auc:0.73401
# [1200] train-auc:0.75941 eval-auc:0.73419
# [1400] train-auc:0.76342 eval-auc:0.73438
# [1600] train-auc:0.76730 eval-auc:0.73458
# [1800] train-auc:0.77105 eval-auc:0.73454
# Stopping. Best iteration:
# [1694] train-auc:0.76910 eval-auc:0.73464
# [0.731769339538683, 0.733395913606802, 0.7351456720593506, 0.7300361842852358, 0.734639280693211]
# xgb_scotrainre_list: [0.731769339538683, 0.733395913606802, 0.7351456720593506, 0.7300361842852358, 0.734639280693211]
# xgb_score_mean: 0.7329972780366564
# xgb_score_std: 0.0018839633265100187
lgb_train, lgb_test = cat_model(x_train, y_train, x_test)
# ************************************ 1 ************************************
# 0: learn: 0.3944330 test: 0.3964727 best: 0.3964727 (0) total: 138ms remaining: 45m 59s
# 500: learn: 0.3728126 test: 0.3756408 best: 0.3756408 (500) total: 28.1s remaining: 18m 13s
# 1000: learn: 0.3711980 test: 0.3750523 best: 0.3750523 (1000) total: 56.2s remaining: 17m 47s
# 1500: learn: 0.3699538 test: 0.3748118 best: 0.3748107 (1476) total: 1m 23s remaining: 17m 11s
# 2000: learn: 0.3688546 test: 0.3746815 best: 0.3746815 (2000) total: 1m 51s remaining: 16m 44s
# Stopped by overfitting detector (50 iterations wait)
# bestTest = 0.3746253358
# bestIteration = 2266
# Shrink model to first 2267 iterations.
# [0.7306375926022922]
# ************************************ 2 ************************************
# 0: learn: 0.3947513 test: 0.3951211 best: 0.3951211 (0) total: 71.1ms remaining: 23m 41s
# 500: learn: 0.3731076 test: 0.3743412 best: 0.3743412 (500) total: 28.6s remaining: 18m 32s
# 1000: learn: 0.3714544 test: 0.3737577 best: 0.3737570 (999) total: 56.7s remaining: 17m 56s
# 1500: learn: 0.3702186 test: 0.3735397 best: 0.3735396 (1498) total: 1m 24s remaining: 17m 23s
# 2000: learn: 0.3691118 test: 0.3734092 best: 0.3734074 (1977) total: 1m 52s remaining: 16m 54s
# 2500: learn: 0.3680796 test: 0.3733234 best: 0.3733218 (2484) total: 2m 21s remaining: 16m 28s
# Stopped by overfitting detector (50 iterations wait)
# bestTest = 0.373251629
# bestIteration = 2919
# Shrink model to first 2920 iterations.
# [0.7306375926022922, 0.7325015175914498]
# ************************************ 3 ************************************
# 0: learn: 0.3951060 test: 0.3937487 best: 0.3937487 (0) total: 70.2ms remaining: 23m 24s
# 500: learn: 0.3734715 test: 0.3730983 best: 0.3730983 (500) total: 28.4s remaining: 18m 26s
# 1000: learn: 0.3718399 test: 0.3724184 best: 0.3724184 (1000) total: 56.5s remaining: 17m 53s
# 1500: learn: 0.3706048 test: 0.3721639 best: 0.3721639 (1500) total: 1m 24s remaining: 17m 24s
# 2000: learn: 0.3695127 test: 0.3720199 best: 0.3720199 (2000) total: 1m 52s remaining: 16m 52s
# 2500: learn: 0.3685041 test: 0.3719052 best: 0.3719025 (2479) total: 2m 20s remaining: 16m 20s
# Stopped by overfitting detector (50 iterations wait)
# bestTest = 0.3719024831
# bestIteration = 2479
# Shrink model to first 2480 iterations.
# [0.7306375926022922, 0.7325015175914498, 0.7340103693991001]
# ************************************ 4 ************************************
# 0: learn: 0.3949491 test: 0.3943298 best: 0.3943298 (0) total: 66.8ms remaining: 22m 16s
# 500: learn: 0.3732214 test: 0.3741316 best: 0.3741316 (500) total: 28.2s remaining: 18m 18s
# 1000: learn: 0.3715666 test: 0.3735451 best: 0.3735414 (995) total: 56s remaining: 17m 42s
# 1500: learn: 0.3703238 test: 0.3733058 best: 0.3733045 (1498) total: 1m 23s remaining: 17m 9s
# 2000: learn: 0.3692105 test: 0.3731636 best: 0.3731634 (1999) total: 1m 51s remaining: 16m 41s
# 2500: learn: 0.3681907 test: 0.3730490 best: 0.3730490 (2500) total: 2m 19s remaining: 16m 13s
# Stopped by overfitting detector (50 iterations wait)
# bestTest = 0.3730185197
# bestIteration = 2723
# Shrink model to first 2724 iterations.
# [0.7306375926022922, 0.7325015175914498, 0.7340103693991001, 0.7291287412227256]
# ************************************ 5 ************************************
# 0: learn: 0.3948860 test: 0.3944692 best: 0.3944692 (0) total: 68.4ms remaining: 22m 47s
# 500: learn: 0.3733508 test: 0.3734623 best: 0.3734623 (500) total: 28.7s remaining: 18m 37s
# 1000: learn: 0.3717222 test: 0.3729094 best: 0.3729094 (1000) total: 57s remaining: 18m 2s
# 1500: learn: 0.3704933 test: 0.3726407 best: 0.3726407 (1500) total: 1m 25s remaining: 17m 32s
# 2000: learn: 0.3693930 test: 0.3725202 best: 0.3725200 (1998) total: 1m 53s remaining: 17m 4s
# 2500: learn: 0.3683883 test: 0.3724494 best: 0.3724494 (2500) total: 2m 22s remaining: 16m 36s
# Stopped by overfitting detector (50 iterations wait)
# bestTest = 0.3724045318
# bestIteration = 2904
# Shrink model to first 2905 iterations.
# [0.7306375926022922, 0.7325015175914498, 0.7340103693991001, 0.7291287412227256, 0.7342835786894728]
# cat_scotrainre_list: [0.7306375926022922, 0.7325015175914498, 0.7340103693991001, 0.7291287412227256, 0.7342835786894728]
# cat_score_mean: 0.7321123599010082
# cat_score_std: 0.0019771188023493848
总结
特征工程是机器学习,甚至是深度学习中最为重要的一部分,在实际应用中往往也是所花费时间最多的一步。各种算法书中对特征工程部分的讲解往往少得可怜,因为特征工程和具体的数据结合的太紧密,很难系统地覆盖所有场景。本章主要是通过一些常用的方法来做介绍,例如缺失值异常值的处理方法详细对任何数据集来说都是适用的。但对于分箱等操作本章给出了具体的几种思路,需要读者自己探索。在特征工程中比赛和具体的应用还是有所不同的,在实际的金融风控评分卡制作过程中,由于强调特征的可解释性,特征分箱尤其重要。