二叉树简介
1、二叉树的定义
二叉树是每个结点最多有两个子树的树结构。它有五种基本形态:二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。
2、二叉树的性质
性质1:二叉树第i层上的结点数目最多为2i-1(i>=1)
性质2:深度为k的二叉树至多有2k-1个结点(k>=1)
性质3:包含n个结点的二叉树的高度至少为(log2n)+1
性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1
3、满二叉树、完全二叉树和二叉查找树
1、满二叉树
定义:高度为h,并且由2h-1个结点组成的二叉树,称为满二叉树
2、完全二叉树
定义:一棵二叉树中,只有最下面两层结点的度可以小于2,并且最下层的叶结点集中在靠左的若干位置上,这样的二叉树称为完全二叉树。
特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。
面试题:如果一个完全二叉树的结点总数为768个,求叶子结点的个数。
由二叉树的性质知:n0=n2+1,将之带入768=n0+n1+n2中得:768=n1+2n2+1,因为完全二叉树度为1的结点个数要么为0,要么为1,那么就把n1=0或者1都代入公式中,很容易发现n1=1才符合条件。所以算出来n2=383,所以叶子结点个数n0=n2+1=384。
总结规律:如果一棵完全二叉树的结点总数为n,那么叶子结点等于n/2(当n为偶数时)或者(n+1)/2(当n为奇数时)
3、二叉查找树
定义:二叉查找树又被称为二叉搜索树。设x为二叉查找树中的一个结点,x结点包含关键字key,结点x的key值计为key[x]。如果y是x的左子树中的一个结点,则key[y]<=key[x];如果y是x的右子树的一个结点,则key[y]>=key[x]
在二叉查找树中:
(1)若任意结点的左子树不空,则左子树上所有结点的值均小于它的根结点的值。
(2)任意结点的右子树不空,则右子树上所有结点的值均大于它的根结点的值。
(3)任意结点的左、右子树也分别为二叉查找树。
(4)没有键值相等的结点。
二叉树的基本操作
- 基本结构
class Tree{
String value;
Tree lNode;
Tree rNode;
public Tree(String value){
this.value = value;
this.lNode = null;
this.rNode = null;
}
}
- 创建
//先序创建
public static Tree createTree(String[] treeNodes){
List<Tree> list = new ArrayList<>();
for (String s : treeNodes){
list.add(new Tree(s));
}
Tree root = list.get(0);
for (int i = 0;i < list.size()/2;i++){
list.get(i).lNode = list.get(i * 2 + 1);
//避免下标越界
if (i * 2 + 2 < list.size()){
list.get(i).rNode = list.get(i * 2 + 2);
}
}
return root;
}
- 遍历
1:先序遍历(DLR)
1):访问根节点;
2):按先序遍历访问左子树
3):按先序遍历访问右子树
a.递归
//先序遍历
public static void preOrder(Tree root){
if (root == null){
return;
}
System.out.print(root.value + " ");
preOrder(root.lNode);
preOrder(root.rNode);
}
b.非递归
public static void preOrder(Tree root) { //先序遍历
Stack<Tree> stack = new Stack<Tree>();
Tree node = root;
while (node != null || stack.size() > 0) { //将所有左孩子压栈
if (node != null) { //压栈之前先访问
System.out.println(node.value + " ");
stack.push(node);
node = node.lNode;
} else {
node = stack.pop();
node = node.rNode;
}
}
}
2:中序遍历(LRD)
1):按中序遍历左子树
2):访问根节点
3):按中序遍历访问右子树
a.递归
public static void inOrder(Tree root){
if(null != root){
inOrder(root.lNode);
System.out.print(root.value + "\t");
inOrder(root.rNode);
}
}
b.非递归
public static void inOrder(Tree root) { //中序遍历
Stack<Tree> stack = new Stack<Tree>();
Tree node = root;
while (node != null || stack.size() > 0) {
if (node != null) {
stack.push(node); //直接压栈
node = node.lNode;
} else {
node = stack.pop(); //出栈并访问
System.out.print(node.value + " ");
node = node.rNode;
}
}
}
3:后序遍历
1):按后序遍历访问左子树
2):按后序遍历访问右子树
3):访问根节点
a.递归
public static void postOrder(Tree root){
if (root == null){
return;
}
postOrder(root.lNode);
postOrder(root.rNode);
System.out.print(root.value + " ");
}
b.非递归
public static void postOrder(Tree root) { //后序遍历
Stack<Tree> stack = new Stack<Tree>();
Stack<Tree> output = new Stack<Tree>();//构造一个中间栈来存储逆后序遍历的结果
Tree node = root;
while (node != null || stack.size() > 0) {
if (node != null) {
output.push(node);
stack.push(node);
node = node.rNode;
} else {
node = stack.pop();
node = node.lNode;
}
}
while (output.size() > 0) {
System.out.print(output.pop().value + " ");
}
}
4.层次遍历
从左向右遍历每层的元素
public static void levelOrder(Tree root){
Queue<Tree> queue = new LinkedList<>();
queue.offer(root);
Tree node;
while (!queue.isEmpty()){
node = queue.poll();
System.out.print(node.value + " ");
if (node.lNode != null){
queue.offer(node.lNode);
}
if (node.rNode != null){
queue.offer(node.rNode);
}
}
}
根据遍历顺序创建二叉树
根据先序和中序创建二叉树
public TreeNode buildTree1(int[] preorder, int[] inorder) {
return build1(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
}
public TreeNode build1(int[] preorder, int preStart, int preEnd, int[] inorder, int inStart, int inEnd) {
if (preStart > preEnd) {
return null;
}
int rootValue = preorder[preStart];
int index = 0;
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == rootValue) {
index = i;
break;
}
}
TreeNode root = new TreeNode(rootValue);
int leftSize = index - inStart;
root.left = build1(preorder, preStart + 1, leftSize + preStart, inorder, inStart, index - 1);
root.right = build1(preorder, preStart + leftSize + 1, preEnd, inorder, index + 1, inEnd);
return root;
}
根据中序和后序创建二叉树
public TreeNode buildTree(int[] inorder, int[] postorder) {
return build(inorder, 0, inorder.length - 1, postorder, 0, postorder.length - 1);
}
public TreeNode build(int[] inorder, int inStart, int inEnd, int[] postorder, int postStart, int postEnd) {
if (inStart > inEnd) {
return null;
}
int rootValue = postorder[postEnd];
int index = 0;
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == rootValue) {
index = i;
break;
}
}
int leftSize = index - inStart;
TreeNode root = new TreeNode(rootValue);
root.left = build(inorder, inStart, index - 1, postorder, postStart, postStart + leftSize - 1);
root.right = build(inorder, index + 1, inEnd, postorder, postStart + leftSize, postEnd - 1);
return root;
}