〇. 前言
本博客记录了安装Anaconda以及Tensorflow-gpu的过程,大量参考了现有资料,在此对提供帮助的素不相识的博主们表示感谢。这里记录的安装过程是在Windows11系统下进行的,但是对于其他系统下的安装亦有参考之用。
一. 安装Anaconda
Anaconda是一个Python包管理软件,使用它可以方便的管理Python的版本以及软件包的版本。它的安装以及基本操作说明见如下链接:
1. Anaconda安装与Python虚拟环境配置Anaconda安装与Python虚拟环境配置保姆级图文教程(附速查字典)_anaconda配置python环境_Mr.Winter`的博客-CSDN博客Python固然通俗优雅,适合新手入门,但其有两个痛点:依赖网复杂、包管理混乱,为了更好地管理Python库,引入Anaconda。本文介绍Anaconda全套配置流程与工作中常用的命令速查表,提升开发效率https://blog.csdn.net/FRIGIDWINTER/article/details/124078674 2. Anaconda较详细的介绍与使用说明
二. 安装CUDA与GPU版本Tensorflow
GPU版本的Tensorflow依赖于显卡厂商NVIDIA推出的运算平台CUDA(Compute Unified Device Architecture)。因此,成功安装了CUDA基本意味着能够成功安装Tensorflow-gpu。CUDA与Tensorflow-gpu的安装见以下链接:
1. 非常详细的CUDA与Tensorflow-gpu安装说明
三. 一些报错信息的处理
1. 在Anaconda虚拟环境安装Tensorflow-gpu后,找不到一些动态链接库
运行如下代码验证是否能找到GPU:
import tensorflow as tf
tf.test.is_built_with_cuda()#用来验证cuda是否可用
tf.__version__#返回tensorflow-gpu的版本
tf.test.gpu_device_name()#返回gpu的名称
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))#返回可用GPU的个数
出现以下找不到多个动态链接库的报错:
Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
Could not load dynamic library 'cublas64_11.dll'; dlerror: cublas64_11.dll not found
Could not load dynamic library 'cublasLt64_11.dll'; dlerror: cublasLt64_11.dll not found
Could not load dynamic library 'cufft64_10.dll'; dlerror: cufft64_10.dll not found
Could not load dynamic library 'curand64_10.dll'; dlerror: curand64_10.dll not found
Could not load dynamic library 'cusolver64_11.dll'; dlerror: cusolver64_11.dll not found
Could not load dynamic library 'cusparse64_11.dll'; dlerror: cusparse64_11.dll not found
Could not load dynamic library 'cudnn64_8.dll'; dlerror: cudnn64_8.dll not found
打开安装CUDA的文件夹(默认安装路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin),如果文件夹中没有报错信息中提示缺少的动态链接库,那需要手动下载这些库,网上有教程,在此不赘述。我遇到的是另一种情况,在这个文件夹里虽然有这些动态链接库,但是Anaconda创建的虚拟环境没有找到到这些库。换言之,本机确实存在这些库,但是这些库不在保存Anaconda创建的虚拟环境的文件夹下。解决方案很简单,在CUDA安装文件夹找到报错信息提示的缺少的库,把这些库放到Anaconda虚拟环境文件夹的根目录下。