使用Anaconda配置GPU版本Tensorflow简要说明

本文详细记录了在Windows11系统中安装Anaconda和Tensorflow-gpu的步骤,包括参考资源和CUDA的安装。在安装过程中遇到的动态链接库缺失问题,文章提供了检查和解决方法,即把CUDA安装目录下的库文件复制到Anaconda虚拟环境的根目录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

〇. 前言

        本博客记录了安装Anaconda以及Tensorflow-gpu的过程,大量参考了现有资料,在此对提供帮助的素不相识的博主们表示感谢。这里记录的安装过程是在Windows11系统下进行的,但是对于其他系统下的安装亦有参考之用。

一. 安装Anaconda

        Anaconda是一个Python包管理软件,使用它可以方便的管理Python的版本以及软件包的版本。它的安装以及基本操作说明见如下链接:

        1. Anaconda安装与Python虚拟环境配置Anaconda安装与Python虚拟环境配置保姆级图文教程(附速查字典)_anaconda配置python环境_Mr.Winter`的博客-CSDN博客Python固然通俗优雅,适合新手入门,但其有两个痛点:依赖网复杂、包管理混乱,为了更好地管理Python库,引入Anaconda。本文介绍Anaconda全套配置流程与工作中常用的命令速查表,提升开发效率https://blog.csdn.net/FRIGIDWINTER/article/details/124078674        2. Anaconda较详细的介绍与使用说明

Anaconda介绍、安装及使用教程 - 知乎〇、序Python是一种面向对象的解释型计算机程序设计语言,其使用,具有跨平台的特点,可以在Linux、macOS以及Windows系统中搭建环境并使用,其编写的代码在不同平台上运行时,几乎不需要做较大的改动,使用者无不…https://zhuanlan.zhihu.com/p/32925500

二. 安装CUDA与GPU版本Tensorflow

        GPU版本的Tensorflow依赖于显卡厂商NVIDIA推出的运算平台CUDA(Compute Unified Device Architecture)。因此,成功安装了CUDA基本意味着能够成功安装Tensorflow-gpu。CUDA与Tensorflow-gpu的安装见以下链接:

        1. 非常详细的CUDA与Tensorflow-gpu安装说明

windows下,Anaconda安装GPU版本的tensorflow_anaconda安装gpu版本tensorflow_沫_雪的博客-CSDN博客给工作站配置本地训练模型的环境,我这里要配置的是win10:anaconda+cuda11.0+cudnn8.0.5+tensorflow2.4.0+keras2.4.3。https://blog.csdn.net/weixin_41891632/article/details/126583538        2. 上一篇链接中引用的详细介绍CUDA安装的说明

深度学习环境搭建(GPU)CUDA安装(完全版)_cuda_10.2.89_441.22_win10.exe_小邢同学的博客-CSDN博客深度学习环境搭建(GPU)CUDA安装cuDNN安装https://blog.csdn.net/cashmood/article/details/105081586

三. 一些报错信息的处理

        1. 在Anaconda虚拟环境安装Tensorflow-gpu后,找不到一些动态链接库

        运行如下代码验证是否能找到GPU:

import tensorflow as tf
tf.test.is_built_with_cuda()#用来验证cuda是否可用
tf.__version__#返回tensorflow-gpu的版本
tf.test.gpu_device_name()#返回gpu的名称
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))#返回可用GPU的个数

 出现以下找不到多个动态链接库的报错:

        Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
        Could not load dynamic library 'cublas64_11.dll'; dlerror: cublas64_11.dll not found
        Could not load dynamic library 'cublasLt64_11.dll'; dlerror: cublasLt64_11.dll not found
        Could not load dynamic library 'cufft64_10.dll'; dlerror: cufft64_10.dll not found
        Could not load dynamic library 'curand64_10.dll'; dlerror: curand64_10.dll not found
        Could not load dynamic library 'cusolver64_11.dll'; dlerror: cusolver64_11.dll not found
        Could not load dynamic library 'cusparse64_11.dll'; dlerror: cusparse64_11.dll not found
        Could not load dynamic library 'cudnn64_8.dll'; dlerror: cudnn64_8.dll not found

        打开安装CUDA的文件夹(默认安装路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin),如果文件夹中没有报错信息中提示缺少的动态链接库,那需要手动下载这些库,网上有教程,在此不赘述。我遇到的是另一种情况,在这个文件夹里虽然有这些动态链接库,但是Anaconda创建的虚拟环境没有找到到这些库。换言之,本机确实存在这些库,但是这些库不在保存Anaconda创建的虚拟环境的文件夹下。解决方案很简单,在CUDA安装文件夹找到报错信息提示的缺少的库,把这些库放到Anaconda虚拟环境文件夹的根目录下。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值