
深度学习
文章平均质量分 52
这个柚子有点酸
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
tensorboard可视化
tensorboard命令行(1)进入程序所在的虚拟环境:conda activate XXX(2)tensorboard --logdir=……\log原创 2021-05-24 22:39:05 · 2176 阅读 · 0 评论 -
预训练网络的模型微调方法
是什么神经网络需要数据来训练,从数据中获得信息,进而转化成相应的权重。这些权重能够被提取出来,迁移到其他的神经网络中。迁移学习:通过使用之前在大数据集上经过训练的预训练模型,我们可以直接使用相应的结构和权重,将他们应用在我们正在面对的问题上。即将预训练的模型“迁移”到我们正在应对的特定问题中。在选择预训练模型时需要注意,如果我们的问题与预训练模型训练情景有很大出入,那么模型所得到的的预测结果会非常不准确。举例来说,如果把一个原本用于语音识别的模型用作用户识别,那结果肯定是不理想的。ImageNe..原创 2021-12-06 10:28:26 · 3982 阅读 · 0 评论 -
直观了解CNN
CNN解释器https://poloclub.github.io/cnn-explainer/GitHubhttps://github.com/poloclub/cnn-explainer论文https://arxiv.org/abs/2004.15004原创 2021-11-25 11:07:25 · 2043 阅读 · 0 评论 -
inductive bias理解
神经网络中有很多稀奇古怪的词,让人不能通过字面意思知道其内涵。弯弯绕绕,思考一番,不禁感叹竟原来如此。inductive bias :初读Vision Transformer时,文中提到CNN 具有天然的inductive bias。让人不解。哈哈~归纳,我懂;偏置,我亦懂。归纳偏置 what 玩意儿?(脑补黑人问号脸)有问题就会有答案我打开了知乎……在卷积神经网络中,我们假设特征具有局部性的特性,即当我们把相邻的一些特征放在一起,会更容易得到“解”即使这个问题下最高赞的回答说得很清楚。但原创 2021-11-09 19:10:59 · 1087 阅读 · 0 评论 -
理解卷积神经网络CNN中的特征图 feature map
转载:https://blog.csdn.net/boon_228/article/details/81238091feature map的含义 在每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起,其中每一个称为一个feature map。在输入层,如果是灰度图片,那就只有一个feature map;如果是彩色图片,一般就是3个feature map(红绿蓝)。层与层之间会有若干个卷积核(kernel),上一层和每个feature map跟每个卷积核做卷积,都会产...转载 2021-01-07 18:00:20 · 3131 阅读 · 0 评论 -
深度学习网络中backbone
backbone这个单词原意指的是人的脊梁骨,后来引申为支柱,核心的意思。在神经网络中,尤其是CV领域,一般先对图像进行特征提取(常见的有vggnet,resnet,谷歌的inception),这一部分是整个CV任务的根基,因为后续的下游任务都是基于提取出来的图像特征去做文章(比如分类,生成等等)。所以将这一部分网络结构称为backbone十分形象,仿佛是一个人站起来的支柱。...转载 2021-01-07 17:28:02 · 481 阅读 · 0 评论 -
什么是模式识别,对抗学习是什么?
模式识别是什么?作为人工智能的一个重要方向,模式识别的主要任务是模拟人的感知能力,如通过视觉和听觉信息去识别理解环境,又被称为“机器感知”或“智能感知”。人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定目的把相似、但又细节不同的事物或现象组成一类。字符识别就是一个典型的例子,如数字“4”可以有各种写法,但都属于同一类别。人脑具有很强的模式识别和推广能力,即使对于某种不同写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。人脑的这种对模式(事物、现象等)进行归类和分转载 2020-10-31 16:08:47 · 947 阅读 · 0 评论 -
2020-10-31
变分自编码器VAE:原来是这么一回事 | 附开源代码过去虽然没有细看,但印象里一直觉得变分自编码器(Variational Auto-Encoder,VAE)是个好东西。趁着最近看概率图模型的三分钟热度,我决定也争取把 VAE 搞懂。于是乎照样翻了网上很多资料,无一例外发现都很含糊,主要的感觉是公式写了一大通,还是迷迷糊糊的,最后好不容易觉得看懂了,再去看看实现的代码,又感觉实现代码跟理论完全不是一回事啊。终于,东拼西凑再加上我这段时间对概率模型的一些积累,并反复对比原论文Auto-E...转载 2020-10-31 17:01:57 · 315 阅读 · 0 评论 -
正则化
1. The Problem of Overfitting1还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓。因此线性回归并没有很好拟合训练数据。我们把此类情况称为欠拟合(underfitting),或者叫作叫做高偏差(bias)。这两种说法大致相似,都表示没有很好地拟合训练数据。高偏差这转载 2020-11-28 13:59:42 · 175 阅读 · 0 评论 -
郑良老师在行人重识别的一篇综述论文中引用的典故翻译
郑良老师在行人重识别的一篇综述论文中引用的古典翻译《Person Re-identification: Past, Present and Future》https://arxiv.org/pdf/1610.02984.pdfAccording to Homer (Odyssey iv:412), Mennelaus was becalmed on his journey home from the Trojan War. He wanted to propitiate the gods and ret原创 2021-08-21 22:04:25 · 306 阅读 · 0 评论 -
度量学习
转载:https://blog.csdn.net/Nehemiah_Li/article/details/44230053度量学习(MetricLearning)度量(Metric)的定义在数学中,一个度量(或距离函数)是一个定义集合中元素之间距离的函数。一个具有度量的集合被称为度量空间。1为什么要用度量学习?很多的算法越来越依赖于在输入空间给定的好的度量。例如K-means、K近邻方法、SVM等算法需要给定好的度量来反映数据间存在的一些重要关系。这一问题在无监督的方法(如聚类)中...转载 2020-12-26 15:51:30 · 535 阅读 · 0 评论 -
转载:理解 ROC 和 AUC
理解 ROC 和 AUC20 November 20151. 引言ROC(Receiver Operating Characteristic)曲线和AUC(Area Under Curve)常被用来评价一个二值分类器(binary classifier)的优劣。相比准确率、召回率、F-score这样的评价指标,ROC曲线有这样一个很好的特性:当测试集中正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多转载 2020-11-27 16:33:02 · 995 阅读 · 0 评论 -
深度学习中的epoch,batchsize,iteration都是什么?
转载:https://www.jianshu.com/p/e5076a56946c一切的一切,要从机器学习中的梯度下降法说起。首先让我们来回顾一下这个常见的不能再常见的算法。梯度下降法是机器学习中经典的优化算法之一,用于寻求一个曲线的最小值。所谓"梯度",即一条曲线的坡度或倾斜率,"下降"指代下降递减的过程。梯度下降法是迭代的,也就是说我们需要多次计算结果,最终求得最优解。梯度下降的迭代质量有助于使输出结果尽可能拟合训练数据。梯度下降法中有一个称为学习率的参数,如上图左所示,在算法开始时,步长更大转载 2021-04-06 20:33:53 · 464 阅读 · 0 评论 -
正则化来龙去脉
这个讲得超通俗易懂https://blog.csdn.net/jinping_shi/article/details/52433975原创 2021-09-01 10:51:44 · 190 阅读 · 0 评论 -
独热编码如何实现
参考链接 通常需要处理的数值都是稀疏而又散乱地分布在空间中,然而,我们并不需要存储这些大数值,这时可以用独热编码。 例如:我们需要处理4维向量空间,当给一个特征向量的第n个特征进行编码时,编码器会遍历每个特征向量的第n个特征,然后进行非重复计数。若第n个特征的最大值为K,则就把这个特征转换为只有一个值为1而其他值都是0的K+1维向量。 encoder=OneHotEncoder(sparse=False)&转载 2021-08-14 11:46:18 · 899 阅读 · 0 评论 -
卷积神经网络的三个特性
转载:elecfans.com/emb/fpga/20171116580425_2.html形象地说,就是模仿你的眼睛,想想看,你在看东西的时候,目光是聚焦在一个相对很小的局部的吧?严格一些说,普通的多层感知器中,隐层节点会全连接到一个图像的每个像素点上,而在卷积神经网络中,每个隐层节点只连接到图像某个足够小局部的像素点上,从而大大减少需要训练的权值参数。对于一个 1000∗1000 的输入图像而言,如果下一个隐藏层的神经元数目为 106 个,采用全连接则有 1000∗1000∗106=101.转载 2020-12-21 14:03:28 · 11210 阅读 · 0 评论 -
论文(四)Detecting 32 Pedestrian Attributes for Autonomous Vehicles
摘要:对于城市地区的自动驾驶车辆来说,行人无疑是最安全的道路使用者之一。在本文中,我们解决了行人联合检测和识别32个行人属性的问题。这些包括视觉外观和行为,也包括道路交叉口的预测,这是一个主要的安全问题。为此,我们引入了一个依赖于复合领域框架的多任务学习(MTL)模型,有效地实现了这两个目标。每个字段对行人实例进行空间定位,并对其进行属性预测。这个公式自然地利用了空间上下文,使它非常适合低分辨率的场景,如自动驾驶。通过增加共同学习的属性的数量,我们突出了一个与梯度尺度相关的问题,这在具有大量任务的MTL翻译 2020-12-09 08:16:07 · 208 阅读 · 0 评论 -
深度卷积神经网络中的patch
转载:在阅读基于深度卷积神经网络的图像识别、分类或检测的文献时经常看到“patch”,不是很能理解,后来就总结了一下。通过阅读,“patch”似乎是CNN输入图像的其中一小块,但它究竟是什么呢?当使用CNN解决问题时,“patch”什么时候开始起作用?为什么我们需要“patch”? “patch”和内核(即特征检测器)之间有什么关系?在CNN学习训练过程中,不是一次来处理一整张图片,而是先将图片划分为多个小的块,内核 kernel (或过滤器或特征检测器)每次只查看图像的一个块,这一个小块.转载 2020-12-09 00:07:26 · 6721 阅读 · 2 评论 -
论文(二)Saliency-Guided Attention Network for Image-Sentence Matching
DOI:10.1109 / ICCV.2019.00585摘要:本文研究图像和语义的匹配任务,其中学习适当的表示法以弥合图像内容和语言使用者之间的语义鸿沟是主要挑战。 与以前主要采用对称体系结构来代表两种模式的先前方法不同,我们引入了显著性引导注意力网络(SAN),其特征在于在视觉和语言之间建立不对称链接,从而有效地学习细粒度的跨模态 相关性。 拟议的SAN主要包括三个部分:显着性检测器,显着性加权视觉注意(SVA)模块和显着性文本注意(STA)模块。 具体地,显着性检测器提供视觉上的显着性信息原创 2020-12-08 18:52:43 · 2546 阅读 · 0 评论 -
卷积神经网络——池化(pooling)的理解
原文链接:https://www.cnblogs.com/booturbo/archive/2020/04/13/12693858.html在训练卷积神经网络模型时,经常遇到max pooling和 averagepooling,近些年的图像分类模型多数采用了max pooling,为什么都是使用max pooling,它的优势在哪呢?一般情况下,max pooling的效果更好,虽然 max pooling和average pooling都对数据做了sampling,但是感觉max po...转载 2020-12-02 19:30:19 · 2145 阅读 · 0 评论 -
卷积神经网络——padding的理解
原文链接:https://blog.csdn.net/baidu_36161077/article/details/81165531首先看一下以下代码吧!from keras.layers import Conv2D,Dense,Flattenfrom keras.models import Sequentialmodel = Sequential()model.add(Conv2D(filters = 32,kernel_size = [3,3],strides = [1,1],padd转载 2020-12-02 19:26:23 · 1597 阅读 · 0 评论 -
用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
原文链接:https://zhuanlan.zhihu.com/p/25928551总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路、做法和部分实践的经验。业务问题描述:淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”。淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也是10亿量级,我们是任务是根据商品标题预测其所在叶子类目,示例中商品归属的类目为“女装/女士精品>>蕾丝衫/翻译 2020-11-28 19:58:53 · 1566 阅读 · 0 评论