目录
大家好,我是一个对硬件设计和机器学习有深厚兴趣的研究者。在这篇文章中,我将介绍如何用Verilog编程语言实现卷积神经网络(CNN)并在现场可编程门阵列(FPGA)上进行合成。具体来说,我们将使用RTL设计方法并选用LeNet作为目标模型,同时将Cop语言用于描述复杂的控制流程。这是一篇入门级的教程,因此我会尽量详细清晰地解释每一步,使得即使是初学者也能跟上。
前言
在深度学习的世界中,卷积神经网络(CNN)是最常见的一种网络类型,用于处理具有网格结构的数据,例如图像。它由一系列的卷积层和池化层组成,并以全连接层结束。而在硬件设计领域,Verilog是一种硬件描述语言,可以用来创建和设计数字和混合信号系统。结合FPGA,我们可以将CNN模型实时地、有效地部署在硬件上,以满足某些低功耗、高效能的需求。
一、环境设置
在开始我们的实现之前,我们需要有以下环境:
- 一个Verilog编译器,例如Icarus Verilog或者ModelSim。
- FPGA开发套件,例如Xilinx Vivado或Intel Quartus Prime。
- FPGA开发板。这个可以