推荐算法之排序召回推荐指标总结

本文总结了推荐算法中常用的评估指标,包括ROC与AUC、Hit Ratio(HR)、Mean Average Precision(MAP)和Normalized Discounted Cummulative Gain(NDCG)。重点解释了NDCG的概念,它是通过归一化累计增益实现不同推荐列表之间的横向评估,以衡量排序效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近想起总结一下常用的推荐指标了,觉得这也是最基础的知识点吧。不过这个也不是很全,只是将一些我认为基础的常用的进行了一下总结,后续在任务中遇到其他的再进行补充吧。

比如我们常听到的AUC, MAP(Mean Average Precison), HR(Hit Ratio),NDCG(Normalized Discounted Cumulative Gain),等。

1、ROC与AUC

这些内容, 这里就不整理了,这几个主要是评价二分类问题中模型的性能好坏, 我之前已经有非常详细的一篇文章进行梳理, 这里面最重要的就是AUC, 这个计算一定要会, 计算代码也得会手撸, 具体参考:

推荐系统之ROC和AUC详解

通过这两篇文章, 应该可以把ML里面常用的评估指标和损失函数给拎起来, 这里面分类的重点就是AUC, 这个面试一般必考。下面开始介绍另外一些指标, 下面这些,主要是衡量的推荐列表topK的评价了。

2、 Hit Ratio(HR)

在top-k里面,HR是一种常用的衡量召回率的方式,也是很容易理解的一种排序方式。先看一下计算公式:

 分母是所有测试集合, 分子表示每个用户top-K列表中属于测试集合的个数总和。举个简单的例子,三个用户在测试集中的商品个数分别是10,12,8,模型得到的top-10推荐列表中,分别有6个,5个,4个在测试集中,那么此时HR的值是(10+12+8)/(6+5+4)​=0.5。

3、Mean Average Precision(MAP)

这一些关于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值