TensorFlow学习笔记[二]——在训练模型时如何指定具体哪一(多)块GPU显卡进行训练任务

本文介绍了在TensorFlow中如何指定特定GPU进行训练的三种方法:1) 使用`tf.device()`函数,2) 设置环境变量`CUDA_VISIBLE_DEVICES`,3) 在终端执行时设置`CUDA_VISIBLE_DEVICES`。通过实例展示了如何避免其他GPU被占用,确保模型训练在指定GPU上进行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在用tensorflow深度学习模型训练时,假设我们在训练之前没有指定具体用哪一块GPU进行训练,则默认的是选用第0块GPU来训练我们的模型。如果你的电脑有多块GPU的话,其它几块GPU的也会显示被占用。

        有些时候,我们希望可以通过自己指定一块或者几块GPU来训练我们的模型,而不是用这种系统默认的方法。接下来将介绍三种指定GPU训练的方法。

        我们现有的GPU个数如下所示(公司的4路泰坦xp):

        

1.在python代码中通过tf.device()函数来指定训练时所要使用的GPU:

假设我们要用我们的第“1”块(注意,这里是以第“0”块为开始,第“1”块其实应该是第二块了)GPU来训练模型,此时可以通过下面的代码来指定:

tf.device('/gpu:1')

实验效果如下:

这里用AI_Challenger场景分类的baseline模型测试一下:

在python脚本代码里的最开头加上:

tf.device('/gpu:1')

### 在 Linux 系统中安装和配置 TensorFlow-GPU #### 虚拟环境准备 为了确保依赖项不会与其他项目冲突,建议先创建个独立的 Anaconda 或 Conda 虚拟环境。通过以下命令可以完成虚拟环境的建立激活它: ```bash conda create -n tensorflow_env python=3.8 conda activate tensorflow_env ``` 此操作将创建名为 `tensorflow_env` 的新环境,将其 Python 版本设置为 3.8[^3]。 #### 安装必要的库 在虚拟环境中,除了 TensorFlow 外还需要些常用的科学计算库来辅助开发工作流。这些可以通过 pip 工具轻松安装: ```bash pip install numpy==1.19.5 pandas==1.2.4 scikit-learn==0.24.2 ``` 上述命令分别用于安装 NumPy、Pandas 和 Scikit-Learn 库,它们对于数据处理和机器学习模型构建非常重要。 #### 安装 TensorFlow-GPU种方法可以选择安装 TensorFlow-GPU具体取决于个人偏好以及系统的 CUDA/CuDNN 支持情况。以下是几种常见方式: ##### 使用 Pip 进行安装 如果系统已经正确设置了 NVIDIA 显卡驱动程序及其对应的 CUDA Toolkit 和 CuDNN 库,则可以直接利用 pip 来安装特定版本的 TensorFlow-GPU: ```bash pip install tensorflow-gpu==2.5.0 ``` 或者当遇到网络连接问题可考虑清华镜像源作为替代方案: ```bash pip install tensorflow-gpu==2.5.0 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 另外还有种强制全局权限的方式适用于某些特殊场景下的部署需求: ```bash sudo pip3 install tensorflow-gpu==2.5.0 ``` 以上三种途径均能实现相同目标——即引入支持 GPU 加速功能的 TensorFlow 框架到当前运行环境中。 ##### 利用 Conda 渠道管理器执行安装过程 另种推荐的方法是从官方认可的安全仓库(如 conda-forge)获取预编译好的进制文件来进行安装: ```bash conda install tensorflow-gpu==2.6.0 -c conda-forge ``` 值得注意的是,采用这种方法的好处在于它可以自动解决大部分关于兼容性的难题,比如适配合适的 cuda toolkit 及 cuDNN 组件等复杂关系链路[^5]。 #### 验证安装成果 最后步至关重要,那就是验证整个流程是否顺利完成无误。进入 Python 解析器界面之后输入下面几行测试代码即可判断是否有任何潜在隐患存在: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) ``` 这段脚本的作用是用来统计实际能够被识别出来的物理级图形处理器数量;理想状态下应该返回大于零的结果表明至少有显卡可供调用参与运算活动之中。 ### Docker 方案简介 除此之外,还有基于容器化技术解决方案值得探索番。例如借助于预先打包完毕的标准映像文件快速启动具备完整功能特性的交互式笔记本服务端实例: ```bash docker pull tensorflow/tensorflow:2.2.0-gpu-jupyter docker run -it --gpus all -p 8888:8888 tensorflow/tensorflow:2.2.0-gpu-jupyter ``` 这样做的优势是可以完全隔离宿主机原有软硬件状态影响因素干扰的同享受高度致化的实验平台体验效果[^4]。 ---
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值