最近需要在服务器上配置tensorflow-gpu的环境来运行深度学习模型,以前在Windows上配置过,也知道一些注意点,这次在Linux下配置,也遇到了很多坑,下面总结一下配置过程,配置是使用Linux下安装的anaconda来进行的。
- 激活虚拟环境
我在服务器上安装了anaconda,并且创建了一个python3.6的虚拟环境,命名为tensorflow,在该环境下进行各种库的安装以及环境配置。下面几个步骤的操作均在该虚拟环境下进行。(当然你也可以在anaconda默认环境下进行配置)
命令
source activate tensorflow
- 查看本机驱动
nvidia-smi
可以看到本机驱动为390.46 - 查看驱动对照表
可以在nvidia的官网查看cuda与驱动对照表 官网对照表 - 查看tensorflow-gpu与cuda、cudnn的对照表
可以在tensorflow的官网查看该表 tensorflow版本与cuda、cudnn对照表