121. 买卖股票的最佳时机
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
题解
第一种方法,动态规划设置一个dp数组,dp[i] 表示第 i 天时最大的利润能达到多少。设想,这一天能做什么,卖,或者不卖,所以dp[i] 就取这一天卖股票,和不卖股票,两者之间的利润最大值,得到状态转换方程
dp[i]=max( dp[i-1] , 当前价格-前面的最小)
def maxProfit(prices):
n = len(prices)
dp = [0 for _ in range(n+1)]
minV = prices[0]
for i in range(1,n):
if prices[i]>=minV:
dp[i] = max(dp[i-1],prices[i]-minV)
else:
minV = prices[i]
return max(dp)
第二种方法,双指针
设置两个指针,sell 和 buy,都指向开头,sell 不停向后移动,buy指向的值大于sell 指向的值,就认为是有利润的,prices[sell]-prices[buy]就是利润,如果指向的小于buy 指向的值,就把buy 后移一位,重复这个过程,并不断更新最大值
def maxProfit(prices):
maxV = 0
buy,sell = 0,0
while sell<len(prices)-1:
sell += 1
if prices[sell]>=prices[buy]:
maxV = max(maxV,prices[sell]-prices[buy])
else:
buy = sell
return maxV
122. 买卖股票的最佳时机2
题目改了一个条件,只能买一次,变成了可以买任意次
这样题目就简单了无数倍,试想,我是可以预知未来价格的,一旦我亏了,我在亏之前就卖出去不就好了?只要保证价格即将下降的时候卖出,又在最低谷买进,就是最大收益,换句话讲,就是求整个数组中,所有递增的大小
def maxProfit(prices):
n = len(prices)
count = 0
for i in range(1,n):
if prices[i]>=prices[i-1]: 很好理解,下一个更大就买进啊,一旦小了就不管啊
count += (prices[i] - prices[i - 1])
return count
123. 买卖股票的最佳时机3(含冷冻期)
题目又改了,升级成了中等困难模式,现在规定,交易次数还是无限,但是交易完一次之后,会有一天的冷冻期不能交易
用动态规划做解
首先设置一个dp二维数组,dp[i][j],i代表第几天,j是0或者1,代表手里有没有股票
dp[i][0],第i天手里没股票,有两种可能,第i-1天卖了,或者今天卖了,取最大,max(dp[i-1][0],dp[i-1][1]+prices[i])
dp[i][1],手里有股票,有两种可能,第i-1天就买了,第i天也就是今天刚买,max(dp[i-1][1],dp[i-2][0]-prices[i]),为啥dp[i-2]呢,因为有冷冻期,今天要想买,必须起码是i-2天刚卖的
def maxProfit( prices):
k = 2
n = len(prices)
dp = [[[0,0] for _ in range(k+1)] for _ in range(n)]
dp[0][0][0] = 0
dp[0][1][1] = -prices[1]
for i in range(1,n):
for j in range(1,k+1):
dp[i][j][0] = max(dp[i-1][j][1]+prices[i],dp[i-1][j][0])
dp[i][j][1] = max(dp[i-1][j][1],dp[i-1][j-1][0]-prices[i])
return dp[n-1][k][0]
309. 买卖股票的最佳时机3
题目变成,交易只能有2次,没有冷冻期,变成了困难模式
还是动态规划,借用上面一题的思路,变成3维数组,给出代码,留一点思考的空间
def maxProfit(prices):
k = 2
n = len(prices)
dp = [[[0, 0] for _ in range(k + 1)] for _ in range(n)]
dp[0][1][0] = 0
dp[0][1][1] = -prices[0]
dp[0][2][0] = 0
dp[0][2][1] = -prices[0]
for i in range(1, n):
for j in range(1, k + 1):
dp[i][j][0] = max(dp[i - 1][j][1] + prices[i], dp[i - 1][j][0])
dp[i][j][1] = max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i])
print(dp[n - 1][k][0])
return dp[n - 1][k][0]