
论文周报
远方的河岸
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Deep Learning for Person Re-identification: A Survey and Outlook——准研究生论文周报
1 简介 这是一篇综述性文章,本文从closed-world和open-world两个方面较细致地分析了Re-ID,并展望了前景。这次的心得写得较长,也算是一个总结。 首先,作者通过将Re-ID分为封闭世界(closed-world)的ReID和开放世界(open-world)的Re-ID来陈述,如下表,通俗地说,closed-world指的就是较为理想的环境下的实验,比如单模态的数据集、正确框出的行人box,open-world指的是更贴近现实应用场景的实验,比如跨模态、直接利用原始视频流或图片帧原创 2020-07-30 17:41:12 · 1118 阅读 · 1 评论 -
Infrared-Visible Cross-Modal Person Re-Identification with an X Modality——准研究生论文周报
1 标题 Infrared-Visible Cross-Modal Person Re-Identification with an X Modality 来源:AAAI 20202 概述 本文也是一篇跨模态ReID(cm-ReID),和上周的那篇结合特有特征和共享特征的cm-ReID相比,本文在两个数据集上的表现并不如前者,不过也是提供了一种思路吧。 本文的思路和做法巧妙而简单,跨模态ReID是个很难的任务,因为模态之间的差异或者说gap较大,为了减小gap,作者引入了一个介于RGB和红外图原创 2020-07-22 19:50:18 · 752 阅读 · 0 评论 -
Cross-modality Person re-identification with Shared-Specific Feature Transfer——论文周报
文章目录1 标题2 概述3 创新点4 算法及实验4.1 模型及算法双流特征提取器(Two-stream feature extractor)共有-特有转移网络(Shared-Specific Transfer Network,SSTN)①亲和力模型(Affinity modeling)②共享和特定信息的传播共有-特有互补学习(Shared and specific complementary learning)①共享特征的模态自适应②特定特征的投影对抗学习③重建增强优化4.2 实验5 心得1 标题 C原创 2020-07-16 15:16:39 · 1264 阅读 · 1 评论 -
Person Re-Identification by Deep Joint Learning of Multi-Loss Classification——准研究生论文周报
1 标题 Person Re-Identification by Deep Joint Learning of Multi-Loss Classification 来源:IJCAI 2017 日期:7月6日2 概述 发文当时(2017年),用特征提取做REID的学者很多,但这些工作往往仅通过全局(global)特征或局部(local)特征实现。全局特征和局部特征之间存在一定的互补性,合理结合两种特征,能达到一加一大于二的效果,且在捕获信息时,同时观察全局信息和局部信息更贴近人类视觉系统。 为原创 2020-07-08 15:24:50 · 440 阅读 · 1 评论 -
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification——准研究生论文周报
1 标题 COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification 来源:CVPR 2020 日期:06月30日 周二2 概述 现存的绝大多数REID数据集中,单一行人的着装是相同的,然而在实际生活中,换衣服是不可避免的,想要REID算法落地投入应用,更不能回避行人着装变化的情况。 为此,文章贡献了新的换衣数据集COCAS(ClOthes ChAnging Person Set),数据集中同一行人有多原创 2020-07-02 11:25:00 · 1262 阅读 · 5 评论 -
AdderNet: Do we really need multiplications in deep learning——准研究生论文周报
1 标题 AdderNet: Do we really need multiplications in deep learning 来源:CVPR 2020 日期:06月26日 周五2 概述 在计算机运算中,乘法耗费时间和硬件资源,而加法又快又省,CNNs中的卷积等操作都涉及大量的浮点相乘,神经网络真的需要乘法吗?为此,文中提出了加法器网络adder networks(AdderNets),用L1距离作为filter和feature的相似度量,摒弃原来的乘法运算,以减少神经网络运算的代价。此外,原创 2020-06-26 15:37:00 · 651 阅读 · 0 评论 -
Unsupervised Person Re-identification via Multi-label Classification——准研究生论文周报
1 标题 Unsupervised Person Re-identification via Multi-label Classification 来源:CVPR 2020 日期:06月16日 周二2 概述 本文提出了一种基于多标签分类的无监督(unsupervised)行人重识别方法,将无标签的REID任务变为多分类问题,从而找到图像真正标签。和之前的无监督方法不同,本文提出的方法使用多标签分类损失来更新网络,所以它并不依赖于标记好的数据(labeled data)和性能较好的预训练模型(go原创 2020-06-17 10:43:25 · 608 阅读 · 0 评论