[pytorch] detr源码浅析
为之后SAM的代码分析做铺垫
1. backbone部分
- detr.py中的DETR class
class DETR(nn.Module):
def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False):
...
def forward(self, samples: NestedTensor):
features, pos = self.backbone(samples)
# 第一步,从图像提取特征
# 返回值:特征图,pos位置编码(当前得到的特征图编码.不是对原始图像)
# 跳到backbone - backbone.py里的Joiner函数
- backbone.py 中的 Joiner class
class Joiner(nn.Sequential):
def __init__(self, backbone, position_embedding):
super().__init__(backbone, position_embedding)
def forward(self, tensor_list: NestedTensor):
# print(tensor_list.tensor.shape)
xs = self[0](tensor_list)
# 输入图像经过resnet
# 得到特征图
out: List[NestedTensor] = []
pos = []
for name, x in xs.items():
out.append(x)
pos.append(self[1](x).to(x.tensors.dtype))
# 跳到position encoding.py
return out, pos
- position encoding.py
第一种:Attention Is All You Need中的正余弦编码方式,不用学习,默认方法
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature # 经验值
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
# 输入特征图大小 batch, c, h, w resnet50 c = 2048
mask = tensor_list.mask
# mask 表示实际的特征true 还是padding出来的false
# 大小 batch,h,w
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32) # 行方向累加 最后一位为累加的得到的最大值
x_embed = not_mask.cumsum(2, dtype=torch.float32) # 列方向累加 最后一位为累加的得到的最大值
if self.normalize:
eps = 1e-6
# 归一化
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
# 算奇数维度或者偶数维度 公式不一样
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4)