形态学经验小波变换(Morphological Empirical Wavelet Transform, MEWT)

一 核心思想

MEWT 是经验小波变换(EWT)与数学形态学(Mathematical Morphology)的融合,旨在解决传统信号处理中的两个关键问题:

自适应频带划分(来自 EWT)

几何特征提取(来自数学形态学)

其创新点在于:

(1)使用形态学操作增强频谱分割

(2)用形态学算子代替传统小波滤波器

二 理论基础

2.1 数学形态学基础运算

设信号 $f(x)$,结构元素 $g_s$(尺度为 $s$):

运算定义效果
腐蚀$\epsilon_{g_s}(f)(x) = \inf\limits_{y \in g_s} \{ f(x+y) \}$消除小亮点
膨胀$\delta_{g_s}(f)(x) = \sup\limits_{y \in g_s} \{ f(x+y) \}$填充小孔洞
开运算$\gamma_{g_s}(f) = \delta_{g_s} \left( \epsilon_{g_s} (f) \right)$平滑亮区域
闭运算$\phi_{g_s}(f) = \epsilon_{g_s} \left( \delta_{g_s} (f) \right)$平滑暗区域

2.2 形态学细节提取算子

  • 开运算残差(亮特征):

$ \Gamma_{s}(f) = f - \gamma_{g_s}(f) $

  • 闭运算残差(暗特征):

$ \Phi_{s}(f) = \phi_{g_s}(f) - f $

三 MEWT 实现步骤

步骤 1:基于形态学的频谱增强

设信号频谱 $|F(\omega)|$,通过形态学平滑:

$ |F|_{\text{smooth}}(\omega) = \phi_{g_{s_0}}\left( \gamma_{g_{s_0}} \left( |F| \right) \right) $

其中 $g_{s_0}$​​ 是小尺度结构元素,用于抑制噪声。

步骤 2:频率尺度 → 形态学尺度映射

根据 EWT 频谱分割边界 $\{\omega_k\}$,建立映射:

$ s_k = \frac{C}{\omega_k} $

C为缩放常数

物理意义:高频 ⇒ 小尺度 $s_k$​,低频 ⇒ 大尺度 $s_k$

步骤 3:构造形态学经验小波

用形态学残差代替传统小波:

  • 多尺度分解核

$ \psi_k^{\text{morph}}(f) = \begin{cases} \Gamma_{s_k}(f) & \text{} \\ \Phi_{s_k}(f) & \text{} \\ \Gamma_{s_k}(f) + \Phi_{s_k}(f) & \text{} \end{cases} $

\Gamma_{s_k}(f):亮特征提取。

\Phi_{s_k}(f):暗特征提取

\Gamma_{s_k}(f) + \Phi_{s_k}(f):联合特征

步骤 4:信号分解

信号被分解成 $K$ 个模态分量 + 残余项:

$ f(x) = \sum_{k=1}^K c_k(x) + r(x) $

  • 模态分量

$ c_k(x) = \psi_k^{\text{morph}}(f)(x) $

  • 残余项(大尺度操作结果):

$ r(x) = \gamma_{g_{s_{\max}}}(f) \quad \text{}$

四 总结

步骤传统 EWTMEWT
预处理直接分析频谱形态学平滑频谱
尺度选择基于频谱极大值位置$\{\omega_k\}$映射至形态尺度:$s_k = C / \omega_k$
滤波实现线性带通滤波:$c_k = f * \psi_k(\omega)$非线性形态学滤波$c_k = \Gamma_{s_k}(f) + \Phi_{s_k}(f)$
重构保证严格满足:$f = \sum c_k + r$        近似满足(非线性误差)

五 优劣

优势:几何特征、冲击保留、自适应频带划分、噪声鲁棒性

劣势:重构误差、高计算复杂度、参数敏感性、理论完备性不足:正交性缺失、收敛性未严格证明

六 适用方向

形态学经验小波变换最适合处理具有以下特征的信号:

(1)包含瞬态冲击成分(如机械冲击、医学波峰)

(2)噪声严重但特征信号具有明显几何形态

(3)需要高保真度提取局部特征

(4)实时/近实时处理需求

(5)传统频域方法难以区分的重叠特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值