TP TN FP FN目标检测评估指标

本文介绍了目标检测中常用的评估指标,包括TP(真正例)、TN(真负例)、FP(假正例)和FN(假负例),以及基于这些指标的Precision(精度)、Recall(召回率)、IoU(交并比)和AP(平均精度)。还详细阐述了如何计算AP,并解释了mIoU和mAP的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. TP TN FP FN
                                                              GroundTruth                 预测结果

TP(True Positives):   真的正样本  = 【正样本  被正确分为  正样本】

TN(True Negatives): 真的负样本  = 【负样本  被正确分为  负样本】

FP(False Positives):  假的正样本  = 【负样本  被错误分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏打水的杯子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值