最优化——线性规划中最大规划和最小规划之间的转换

本文探讨了线性规划中如何将最大优化问题转化为最小优化问题。通过在目标函数前加负号,可以实现从最大化目标到最小化目标的转换。例如,最大值问题 max ∑j=1ncjxj 可以转化为 min ∑j=1n−cjxj。这一转换在解决实际问题时非常有用,特别是在寻找最优解的过程中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优化——线性规划中最大规划和最小规划之间的转换

max⁡∑j=1ncjxj⇒−(min⁡∑j=1n−cjxj)X=(xi...xn)T∈Ω \max \sum_{j=1}^{n} c_{j} x_{j} \quad\quad\quad\quad\Rightarrow\quad\quad\quad\quad -(\min \sum_{j=1}^{n} -c_{j} x_{j}) \\ X=(x_i...x_n)^T \in \Omega maxj=1ncjxj(minj=1ncjxj)X=(xi...xn)TΩ

对于上面的转化的解析:

假设存在Xopt=(k1...kn)X_{opt}=(k_1...k_n)Xopt=(k1...kn)使得max⁡∑j=1ncjxj\max \sum_{j=1}^{n} c_{j} x_{j}maxj=1ncjxj成立,即:使得f(X)=c1x1+...cnxnf(X)=c_1x_1+...c_nx_nf(X)=c1x1+...cnxn取值最大;

那么此XoptX_{opt}Xopt一定使得f(−X)=−c1x1−...cnxnf(-X)=-c_1x_1-...c_nx_nf(X)=c1x1...cnxn最小,即:使得min⁡∑j=1n−cjxj\min \sum_{j=1}^{n} -c_{j} x_{j}minj=1ncjxj成立。

但是上面只是求出了使得f(X)f(X)f(X)最大和f(−X)f(-X)f(X)最小的XXXXoptX_{opt}Xopt,而max⁡∑j=1ncjxj≠min⁡∑j=1n−cjxj\max \sum_{j=1}^{n} c_{j} x_{j} \neq \min \sum_{j=1}^{n} -c_{j} x_{j}maxj=1ncjxj=minj=1ncjxj

所以最大规划和最小规划之间的转换还差最后一步即在min⁡∑j=1n−cjxj\min \sum_{j=1}^{n} -c_{j} x_{j}minj=1ncjxj前面加个负号,即max⁡∑j=1ncjxj=min⁡∑j=1n−cjxj)\max \sum_{j=1}^{n} c_{j} x_{j}=\min \sum_{j=1}^{n} -c_{j} x_{j})maxj=1ncjxj=minj=1ncjxj)

这样就成功转化了。

例题

可以试试手:从min到max转换

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值