CloudCompare内部八叉树集成与最邻近搜索

目的

想使用一下CloudCompare自带的八叉树,替换掉nanoflann。

nanoflann返回值出现异常

​ 用于最邻近搜索,在radiussearch下,如果能找到最近点,那么确实找到的是最近点,如果找不到最近点,那么就会出现问题,如下:

nanoflann::KdTreeFLANN<PB::pmPointXYZ>::Ptr kdtree = std::make_shared<nanoflann::KdTreeFLANN<PB::pmPointXYZ>>();
if (!kdtree) {
    std::cerr << "KD tree build failed!" << std::endl;
    return;
}
kdtree->setInputCloud(cloud);
for (int i = 0; i < checkcorrs.size(); ++i) {
    std::vector<int> searchIndexes;
    std::vector<SCALAR_TYPE> distances;
    SCALAR_TYPE *search_pt = new SCALAR_TYPE[3];
    search_pt[0] = checkcorrs[i].x;
    search_pt[1] = checkcorrs[i].y;
    search_pt[2] = checkcorrs[i].z;
    kdtree->radiusSearch(search_pt, 2.0, searchIndexes, distances);
}

​ 在for循环中,每次更新query的点坐标,然后试图从点云中返回其最近的2.0m范围内的点,如果query点周围没有符合条件的点,那么就会返回上一次for循环的值。详见issue

使用CloudCompare自带的Octree

  • 核心为直接接入cc内部的octree实现最近点的索引,位于#include <DgmOctree.h>,这样检索速度大大加快。过程如下:
  1. 首先找到当前选中哪些entity,此时需要引用主窗口的头文件并获取全局静态变量#include <mainwindow.h>
const ccHObject::Container &selectedEntities = MainWindow::TheInstance()->getSelectedEntities();
  1. 遍历每个选中的entity,并将其转换为点云类型,需要#include <ccHObjectCaster.h>头文件;
for (ccHObject* ent : selectedEntities)
{
	ccPointCloud* pc = ccHObjectCaster::ToPointCloud(ent);
}
  1. 获取ccPointCloud点云类中的八叉树索引,如果未构建,则重新构建;
 ccOctree::Shared octree = pc->getOctree();
 if (!octree)
 {
     octree = pc->computeOctree();
     if (!octree)
     {
     	ccLog::LogMessage(QString::fromLocal8Bit("索引构建失败ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值