Password-conditioned Anonymization and Deanonymization with Face Identity Transformers
提出一种新的人脸身份转换模块,能够对视觉库中的人脸进行自动的基于密码的匿名化和去匿名化操作。主要目的有三个:1.在匿名化后移除人脸身份信息;2.当给定正确密码时能够恢复原人脸;3.在给定一个错误密码时返回一张错误且真实人脸。实验表明,与现有匿名化方法相比,我们的方法能够在不牺牲隐私性的情况下进行多模式基于密码的匿名化和去匿名化操作。
编辑隐私敏感数据(如人脸身份信息)能够减轻对隐私的担忧,但是当前的研究均是单向的,即图像经过匿名化后无法恢复到原图像。需要平衡隐私安全与可访问性。提出的人脸身份转换模块能够同时进行匿名化和去匿名化操作并同时保留隐私性:设计一个离散密码空间,该空间内的密码是改变身份的条件。给定一张原始人脸,人脸身份转换器能够使用不同的密码输出不同的匿名人脸图像。给定一张匿名化人脸,如果给定正确密码就能够恢复为原始图像。进而当给定错误的密码时将输出一张错误的人脸与原人脸不同,仍具有隐私性。每一个错误密码均映射为一个独一无二的身份。
为了迫使人脸身份转换器使用不同的密码输出不同的匿名化人脸,我们优化一个多任务学习目标。
-
最大化使用不同密码的匿名化人脸对之间的特征级不相似性,以此来迷惑人脸分类器。
-
为了迫使它使用正确密码能够恢复为原人脸,训练模型进行匿名化-恢复为原身份当使用正确密码时,否则产生一个新的身份。
-
最大化匿名化人脸与使用错误密码的去匿名化人脸之间特征不相似性确保身份改变。
人脸身份转换器TTT以一张人脸图像I∈ΦI\in\PhiI∈Φ和一个用户定义的密码p∈Pp\in Pp∈P作为输入,其中Φ\PhiΦ和PPP为图像域和密码域。TpIT_pITpI定义为使用密码ppp对输入图像III操作后的变换图像。人脸身份转换器应有属性:
-
最小内存消耗:考虑到大多相机系统的内存空间限制,一个单一的人脸身份转换器能够同时进行匿名化和去匿名化操作。
-
真实性图像:即在原图像域内进行变换,
TpI∈Φ,∀ p∈P,∀ I∈Φ T_pI\in\Phi, \quad \forall\ p\in P,\forall\ I\in \Phi TpI∈Φ,∀ p∈P,∀ I∈Φ -
背景兼容:变换图像的背景B(⋅)B(\cdot)B(⋅)应与原图一样,
B(TpI)=B(I),∀ p∈P,∀ I∈Φ B(T_pI)=B(I),\quad \forall \ p \in P, \forall \ I\in \Phi B(TpI)=B(I),∀ p∈P,∀ I∈Φ -
使用密码进行匿名化:f:Φ→Γf:\Phi \to \Gammaf:Φ→Γ定义为人脸图像到身份信息的函数映射,基于密码ppp来进行匿名化,
f(TpI)≠f(I),∀ p∈P,∀ I∈Φ f(T_pI)\ne f(I), \quad \forall \ p\in P, \forall \ I\in \Phi f(TpI)=f(I),∀ p∈P,∀ I∈Φ -
使用反密码进行去匿名化:将用于匿名化的密码的加法逆模型建模作为去匿名化的正确密码,使用相同的转换器用于去匿名化,模型T−p=Tp−1T_{-p}=T^{-1}_pT−p=Tp−1,
f(T−pTpI)=f(Tp−1TpI)=f(I),∀p∈P, ∀I∈Φ f(T_{-p}T_pI)=f(T^{-1}_pT_pI)=f(I),\quad \forall p\in P,\ \forall I\in \Phi f(T−pTpI)=f(Tp−1TpI)=f(I),∀p∈P, ∀I∈Φ -
使用错误的逆密码得到错误的去匿名化:当使用一个错误的逆密码时得到的身份应与原始身份和匿名化身份不同,
f(Tp′TpI)≠f(I),∀p,p′∈P, p′≠−p, ∀I∈Φf(Tp′TpI)≠f(TpI),∀p,p′∈P, p′≠−p, ∀I∈Φ f(T_{p'}T_pI)\ne f(I), \quad \forall p,p'\in P,\ p'\ne-p,\ \forall I\in\Phi\\ f(T_{p'}T_pI)\ne f(T_pI), \quad \forall p,p'\in P,\ p'\ne-p,\ \forall I\in\Phi f(Tp′TpI)=f(I),∀p,p′∈P, p′=−p, ∀I∈Φf(Tp′TpI)