
细粒度图像处理
文章平均质量分 92
chen_znn
研究方向包括目标检测、目标跟踪、活体检测、人脸识别
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ECCV2022 论文 Contrastive Deep Supervision
传统的训练方法只对神经网络的最后一层进行监督,并将误差逐层反向传播,由于梯度在传播过程中可能会消失,这将导致中间层优化起来比较困难。最近,有的方法提出使用深度监督把辅助分类器添加到深度神经网络的中间层,通过使用有监督的任务损失来优化这些辅助分类器。然而,底层的低级特征并不适合分类。为了解决这个问题,这篇文章提出了一种新的训练框架,称为对比深度监督,它通过基于增强的对比学习来监督中间层训练。原创 2022-09-28 20:07:00 · 2857 阅读 · 2 评论 -
ECCV2022细粒度图像检索SEMICON代码学习记录
SEMICON代码复现及学习记录原创 2022-09-18 21:55:06 · 2282 阅读 · 6 评论 -
ECCV2022细粒度图像检索SEMICON学习记录
这篇文章提出了基于抑制增强的掩码注意力机制和交互式通道转换结构 (Suppression-Enhancing Mask based attention and Interactive Channel transformatiON,SEMICON) 来学习二进制哈希码并用于处理大规模细粒度图像检索任务。原创 2022-09-18 18:09:14 · 3709 阅读 · 1 评论