AVL树

本文深入讲解AVL树的原理,包括平衡因子的概念、添加和删除节点时的平衡恢复过程,以及旋转操作的具体实现。通过详细分析,帮助读者理解AVL树如何确保每次操作的时间复杂度为O(logn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. AVL树简介

2. AVL树添加节点

原始子树1:

添加节点情况1(平衡):

添加节点情况2.1 (LL):

添加节点情况2.2 (LL):

添加节点情况3.1 (LR):

添加节点情况3.2 (LR):

原始子树2:

添加节点情况1(平衡):

添加节点情况2.1(RR):

添加节点情况2.2(RR):

添加节点情况3.1(RL):

添加节点情况3.2(RL):

原始子树3

统一所有旋转操作

3. AVL树删除节点

删除导致的失衡:

LL – 右旋转

RR – 左旋转

LR – RR左旋转,LL右旋转

RL – LL右旋转,RR左旋转

复杂度分析


1. AVL树简介

AVL树是最早发明的自平衡二叉搜索树之一
平衡因子(Balance Factor):某结点的左右子树的高度差
AVL树的特点:
    每个节点的平衡因子只可能是 1、0、-1(绝对值 ≤ 1,如果超过 1,称之为“失衡”) 
    每个节点的左右子树高度差不超过 1 
    搜索、添加、删除的时间复杂度是 O(logn)

AVL树中子树失衡后, 恢复平衡,该子树的高度前后保持一致


2. AVL树添加节点

AVL树失衡情况分析:

BF: Balance Factor(该节点的平衡因子)

H: Height(节点高度)

注意: 下面在分析模型时表述旋转时是以p为中心旋转, 但在旋转方法中传入的旋转节点是g, 因为g节点可以同时兼容上层节点引用和下层节点引用

原始子树1:

添加节点n

添加节点情况1(平衡):

添加在节点n之后, 该子树仍然处于平衡状态


添加节点情况2.1 (LL):

新添加节点为节点p的左节点, 而p也为节点g的左节点;

在添加节点n之后, 子树失衡; 从节点g开始失衡, 而新添加节点作为g的Left的Left节点, 所以在旋转时可以使用 LL-右旋

LL-右旋转

添加节点情况2.2 (LL):

上面为添加n节点导致g节点失衡, 也有可能是n的左子树中添加节点导致失衡

说明: T0,T1,T2,T3 为n,p,g节点子树; 如果在n的平衡因子为0, p的平衡因子为0,  g的平衡因子为1的情况下, 在n的左子树中增加一个节点, 使得n的平衡因子变为1, 则g节点将出现失衡且平衡因子变为2; 可以采用LL-右旋

节点变更操作:

  1. g.left = p.right 
  2. p.right = g 
  3. 让p成为这棵子树的根节点 
  4. 仍然是一棵二叉搜索树:T0 < n < T1 < p < T2 < g < T3 
  5. 整棵树都达到平衡

注意维护的内容:

  1. T2、p、g 的 parent 属性 
  2. 先后更新 g、p 的高度

添加节点情况3.1 (LR):

新添加节点为节点p的右节点, 而p为节点g的左节点;

在添加节点n之后, 子树失衡; 从节点g开始失衡, 而新添加节点作为g的Left的Right节点, 所以在旋转时可以使用 LR-RR左旋, LL右旋

RR-左旋:

LL-右旋:

添加节点情况3.2 (LR):

上面为添加n节点导致g节点失衡, 也有可能是n的右子树中添加节点导致失衡

说明: T0,T1,T2,T3 为n,p,g节点子树; 如果在n的平衡因子为0, p的平衡因子为0,  g的平衡因子为1的情况下, 在n的左子树中增加一个节点, 使得n的平衡因子变为-1, 则g节点将出现失衡且平衡因子变为2; 可以采用LR-RR左旋, LL右旋



原始子树2:

添加节点

添加节点情况1(平衡):

添加节点n后, 子树仍然平衡


添加节点情况2.1(RR):

新添加节点为节点p的右节点, 而p也为节点p的右节点;

在添加节点n之后, 子树失衡; 从节点g开始失衡, 而新添加节点作为g的Right的Right节点, 所以在旋转时可以使用RR左旋

RR-左旋

添加节点情况2.2(RR):

上面为添加n节点导致g节点失衡, 也有可能是n的右子树中添加节点导致失衡

RR-左旋

说明: T0,T1,T2,T3 为n,p,g节点子树; 如果在n的平衡因子为0, p的平衡因子为0,  g的平衡因子为-1的情况下, 在n的右子树中增加一个节点, 使得n的平衡因子变为-1, 则g节点将出现失衡且平衡因子变为-2; 可以采用RR-左旋

节点变更操作:

  1. g.right = p.left
  2. p.left = g 
  3. 让p成为这棵子树的根节点 
  4. 仍然是一棵二叉搜索树:T0 < g < T1 < p < T2 < n < T3 
  5. 整棵树都达到平衡

注意维护的内容:

  1. T1、p、g 的 parent 属性 
  2. 先后更新 g、p 的高度

添加节点情况3.1(RL):

新添加节点为节点p的左节点, 而p为节点p的右节点;

在添加节点n之后, 子树失衡; 从节点g开始失衡, 而新添加节点作为g的Right的Left节点, 所以在旋转时可以使用LR-LL右旋,RR左旋

LL-右旋

RR-左旋

添加节点情况3.2(RL):

上面为添加n节点导致g节点失衡, 也有可能是n的左子树中添加节点导致失衡

LL-右旋

RR-左旋

 

说明: T0,T1,T2,T3 为n,p,g节点子树; 如果在n的平衡因子为0, p的平衡因子为0,  g的平衡因子为-1的情况下, 在n的左子树中增加一个节点, 使得n的平衡因子变为1, 则g节点将出现失衡且平衡因子变为-2; 可以采用LR-LL右旋,RR左旋



原始子树3

此种情况, 在任何位置插入一个节点, 该子树都将保持平衡

LL-右旋, RR-左旋代码示例:

/**
 * 新增节点后的操作(更新高度或者恢复平衡)
 */
@Override
protected void afterAdd(Node<E> node) {
    while ((node = node.parent) != null) {
        if (isBalanced(node)) {
            // 更新高度
            updateHeight(node);
        } else {
            // 恢复平衡
            rebalance2(node);
            // 整棵树恢复平衡
            break;
        }
    }
}

/**
 * 恢复平衡
 * @param grand 高度最低的那个不平衡节点
 */
@SuppressWarnings("unused")
private void rebalance2(Node<E> grand) {
    Node<E> parent = ((AVLNode<E>)grand).tallerChild();
    Node<E> node = ((AVLNode<E>)parent).tallerChild(); //node节点为新添加的节点
    if (parent.isLeftChild()) { // L
        if (node.isLeftChild()) { // LL
            rotateRight(grand);
        } else { // LR
            rotateLeft(parent);
            rotateRight(grand);
        }
    } else { // R
        if (node.isLeftChild()) { // RL
            rotateRight(parent);
            rotateLeft(grand);
        } else { // RR
            rotateLeft(grand);
        }
    }
}

/**
  * 左旋
  * @param grand 高度最低的那个不平衡节点
  */
private void rotateLeft(Node<E> grand) {
    Node<E> parent = grand.right;
    Node<E> child = parent.left;
    grand.right = child;
    parent.left = grand;
    afterRotate(grand, parent, child);
}

/**
  * 右旋
  * @param grand 高度最低的那个不平衡节点
  */
private void rotateRight(Node<E> grand) {
    Node<E> parent = grand.left;
    Node<E> child = parent.right;
    grand.left = child;
    parent.right = grand;
    afterRotate(grand, parent, child);
}

private void afterRotate(Node<E> grand, Node<E> parent, Node<E> child) {
    // 让parent称为子树的根节点
    parent.parent = grand.parent;
    if (grand.isLeftChild()) {
        grand.parent.left = parent;
    } else if (grand.isRightChild()) {
        grand.parent.right = parent;
    } else { // grand是root节点
        root = parent;
    }
    
    // 更新child的parent
    if (child != null) {
        child.parent = grand;
    }
    
    // 更新grand的parent
    grand.parent = parent;
    
    // 更新高度
    updateHeight(grand);
    updateHeight(parent);
}

统一所有旋转操作

根据四种旋转平衡初始与结果情况可以看出, 在进行不同的旋转操作后, 所有子树的排列保持一致, 其中, 节点a与节点g未发生变化,所以可以统一四种旋转操作....

/**
 * 恢复平衡
 * @param grand 高度最低的那个不平衡节点
 */
private void rebalance(Node<E> grand) {
    Node<E> parent = ((AVLNode<E>)grand).tallerChild();
    Node<E> node = ((AVLNode<E>)parent).tallerChild();
    if (parent.isLeftChild()) { // L
        if (node.isLeftChild()) { // LL
            rotate(grand, node, node.right, parent, parent.right, grand);
        } else { // LR
            rotate(grand, parent, node.left, node, node.right, grand);
        }
    } else { // R
        if (node.isLeftChild()) { // RL
            rotate(grand, grand, node.left, node, node.right, parent);
        } else { // RR
            rotate(grand, grand, parent.left, parent, node.left, node);
        }
    }
}

private void rotate(
        Node<E> r, // 子树的根节点
        Node<E> b, Node<E> c,
        Node<E> d,
        Node<E> e, Node<E> f) {
    // 让d成为这棵子树的根节点
    d.parent = r.parent;
    if (r.isLeftChild()) {
        r.parent.left = d;
    } else if (r.isRightChild()) {
        r.parent.right = d;
    } else {
        root = d;
    }
    
    //b-c
    b.right = c;
    if (c != null) {
        c.parent = b;
    }
    updateHeight(b);
    
    // e-f
    f.left = e;
    if (e != null) {
        e.parent = f;
    }
    updateHeight(f);
    
    // b-d-f
    d.left = b;
    d.right = f;
    b.parent = d;
    f.parent = d;
    updateHeight(d);
}

3. AVL树删除节点

删除导致的失衡:

示例:删除子树中的 16
可能会导致父节点或祖先节点失衡(只有1个节点会失衡),其他节点,都不可能失衡

LL – 右旋转

如果绿色节点不存在,更高层的祖先节点可能也会失衡,需要再次恢复平衡,然后又可能导致更高层的祖先节点失衡...
极端情况下,所有祖先节点都需要进行恢复平衡的操作,共 O(logn) 次调整 

RR – 左旋转

LR – RR左旋转,LL右旋转

RL – LL右旋转,RR左旋转

删除节点后恢复平衡代码示例:

//node为真正删除的节点(因为删除度为2的节点时, 真正删除的节点时该节点的前驱节点或者后继节点)
protected void afterRemove(Node<E> node) {
    while ((node = node.parent) != null) {
        if (isBalanced(node)) {
            // 更新高度
            updateHeight(node);
        } else {
            // 恢复平衡
            rebalance(node);
        }
    }
}

复杂度分析

添加 
可能会导致所有祖先节点都失衡 
只要让高度最低的失衡节点恢复平衡,整棵树就恢复平衡【仅需 O(1) 次调整】
删除 
可能会导致父节点或祖先节点失衡(只有1个节点会失衡)
恢复平衡后,可能会导致更高层的祖先节点失衡【最多需要 O(logn) 次调整】

平均时间复杂度 
搜索:O(logn) 
添加:O(logn),仅需 O(1) 次的旋转操作 
删除:O(logn),最多需要 O(logn) 次的旋转操作

 

参考资料:  小码哥教育<<恋上数据结构与算法>>

AVL是一种自平衡的二叉查找,它确保了的高度始终保持在对数级别,从而保证了查找、插入和删除操作的时间复杂度为O(log n)。这种数据结构以它的发明者G.M. Adelson-Velsky和E.M. Landis的名字命名[^1]。 ### AVL的定义 - **平衡因子**:每个节点都有一个平衡因子,它是该节点左子的高度减去右子的高度。对于AVL来说,所有节点的平衡因子只能是-1, 0或1。 - **空**:如果T是空,则它自然是一个AVL。 - **非空**:若T不是空,则其左右子TL和TR都必须是AVL,并且对于任意节点,|HL - HR| ≤ 1(其中HL和HR分别表示左子和右子的高度)。 ### AVL的操作 当进行插入或删除操作时,可能会破坏AVL平衡性,这时需要通过旋转来重新恢复平衡: - **单旋转**: - 左单旋(Single Rotate with Left)用于处理左孩子的左子过高。 - 右单旋(Single Rotate with Right)用于处理右孩子的右子过高。 - **双旋转**: - 左右双旋(Double Rotate with Left)用于处理左孩子的右子过高的情况。 - 右左双旋(Double Rotate with Right)用于处理右孩子的左子过高的情况。 这些旋转操作可以保持AVL的性质不变,并且能够快速地调整的结构以维持平衡。 ### AVL的实现 下面是一个简单的C语言代码示例,展示了如何定义AVL的节点以及实现基本的插入操作。这个例子中包含了必要的函数声明和一些核心逻辑。 ```c #include <stdio.h> #include <stdlib.h> // 定义AVL节点结构体 typedef struct AvlNode { int element; struct AvlNode *left; struct AvlNode *right; int height; // 节点的高度 } *AvlTree, *Position; // 获取两个整数中的较大者 int max(int a, int b) { return (a > b) ? a : b; } // 计算给定节点的高度 static int Height(AvlTree T) { if (T == NULL) return -1; // 空节点高度为-1 else return T->height; } // 单旋转 - 左左情况 AvlTree singlerotatewithLeft(AvlTree K2) { Position K1 = K2->left; K2->left = K1->right; K1->right = K2; // 更新节点高度 K2->height = max(Height(K2->left), Height(K2->right)) + 1; K1->height = max(Height(K1->left), K2->height) + 1; return K1; // 新根 } // 单旋转 - 右右情况 AvlTree singlerotatewithRight(AvlTree K2) { Position K1 = K2->right; K2->right = K1->left; K1->left = K2; // 更新节点高度 K2->height = max(Height(K2->left), Height(K2->right)) + 1; K1->height = max(Height(K1->right), K2->height) + 1; return K1; // 新根 } // 双旋转 - 左右情况 AvlTree doublerotatewithLeft(AvlTree K3) { K3->left = singlerotatewithRight(K3->left); return singlerotatewithLeft(K3); } // 双旋转 - 右左情况 AvlTree doublerotatewithRight(AvlTree K3) { K3->right = singlerotatewithLeft(K3->right); return singlerotatewithRight(K3); } // 插入新元素到AVLAvlTree Insert(int x, AvlTree T) { if (T == NULL) { // 如果为空,创建新节点 T = (AvlTree)malloc(sizeof(struct AvlNode)); if (T == NULL) printf("Out of space!!!"); else { T->element = x; T->left = T->right = NULL; T->height = 0; // 新叶节点高度为0 } } else if (x < T->element) { // 向左子插入 T->left = Insert(x, T->left); // 检查并修复平衡 if (Height(T->left) - Height(T->right) == 2) { if (x < T->left->element) T = singlerotatewithLeft(T); // 左左旋转 else T = doublerotatewithLeft(T); // 左右旋转 } } else if (x > T->element) { // 向右子插入 T->right = Insert(x, T->right); // 检查并修复平衡 if (Height(T->right) - Height(T->left) == 2) { if (x > T->right->element) T = singlerotatewithRight(T); // 右右旋转 else T = doublerotatewithRight(T); // 右左旋转 } } // 更新高度 T->height = max(Height(T->left), Height(T->right)) + 1; return T; } ``` 上述代码提供了AVL的基本框架,包括节点定义、插入操作及必要的旋转方法。实际应用中可能还需要添加更多的功能,如删除节点、查找特定值等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值