LIVOX-MID70的使用

本文介绍了LIVOX MID-70雷达的配置和使用步骤,包括设置IP、网络配置、数据获取以及使用livox_view和RVIZ显示点云信息。同时,通过ROSbag和CloudCompare软件进行精度测试,官方宣称在不同距离下具有高精度表现,实际测试0.5m误差在3cm以内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:配置IP

ifconfig   查看网口 

在这里插入图片描述
顶头的两个为网口
2:配置网络
一般为

192.168.1.50
192.168.148.160

两种:最后的50和160是雷达的ip,设置电脑ip时,不应该重复:
本文章设置的为158
在这里插入图片描述
3:注意事项
设置过程注意不需要再连接以太网络 自己已经连接成功,可以尝试ping一下,看网络是否畅通

ping 192.168.148.50

在这里插入图片描述
4:用livox_view显示

<think>好的,我需要回答用户关于如何标定Livox Mid-70传感器的点云数据的问题。用户提到了联合标定,可能涉及与其他传感器如相机、IMU或激光雷达的组合。首先,我应该回忆之前提供的引用内容,看看是否有相关的标定步骤或资源。 引用[1]提到ZED2i与Livox Mid-70的联合标定,可能涉及不同传感器之间的坐标对齐。引用[2]和[3]提供了Livox Mid-70在ROS2环境下的驱动安装和与其他硬件如Jetson Orin、IMU的联合标定方法。这说明标定过程可能需要使用ROS工具,如livox_ros2_driver,以及标定工具如标定板、Autoware或手动方法。 接下来,我需要整理标定的基本流程。首先,安装驱动和依赖项,确保传感器正常工作。然后,数据采集,可能需要使用标定板收集点云和图像数据。接着是时间同步,确保不同传感器数据的时间对齐,这一步可能涉及硬件同步或软件时间戳。然后是坐标转换,使用标定工具计算传感器间的外参,比如相机到LiDAR的变换矩阵。最后验证标定结果,检查点云和图像的融合效果。 用户可能需要具体的步骤和工具推荐,比如使用ROS中的TF工具发布坐标变换,或者使用Autoware的标定功能。此外,引用中的GitHub链接和安装步骤也很重要,需要正确引导用户安装驱动和SDK。需要注意ROS1和ROS2驱动的不同,如引用[2]指出livox-ros2-driver与ROS1的不同,避免混淆。 可能的问题包括时间同步不准确导致标定误差,外参计算不准确,或者驱动安装问题。应该提醒用户注意这些常见问题,并参考提供的链接获取详细教程。最后,生成相关问题可以帮助用户进一步了解优化方法或其他标定场景。</think>### Livox Mid-70 点云标定方法及教程 #### 1. 标定准备工作 - **硬件连接**:确保Livox Mid-70激光雷达与主机(如Jetson Orin)正确连接,并安装官方驱动。引用[3]中提到需通过以下命令安装Livox SDK: ```bash sudo apt install cmake git clone https://github.com/Livox-SDK/Livox-SDK.git cd Livox-SDK/build && cmake .. && make sudo make install ``` - **ROS环境配置**:若需与其他传感器(如IMU、相机)联合标定,需配置ROS环境。例如,Livox ROS2驱动安装方法参考引用[2]的GitHub链接[^2]。 #### 2. 单传感器标定 - **内参标定**:Livox Mid-70出厂时已完成内参校准,通常无需用户操作。若需验证数据质量,可使用官方软件`Livox Viewer`实时观察点云分布。 #### 3. 多传感器联合标定(以激光雷达+相机为例) - **数据采集**: - 使用标定板(如棋盘格或Charuco板)同时采集点云和图像数据。 - 确保标定板在两者视野中清晰可见,并覆盖不同角度和距离。 - **时间同步**: - 硬件同步:通过PTP协议或外部触发信号对齐时间戳。 - 软件同步:在ROS中使用`message_filters`模块对齐传感器话题[^2]。 - **外参计算**: 1. 提取标定板的角点坐标(点云中通过平面拟合,图像中通过角点检测)。 2. 使用标定工具(如`lidar_camera_calibration`或Autoware的标定模块)计算激光雷达与相机之间的坐标变换矩阵$T_{lidar}^{camera}$。 3. 验证标定结果:将点云投影到图像坐标系,观察重叠精度。 #### 4. 标定结果应用 - 在ROS中通过TF发布坐标变换: ```xml <node pkg="tf" type="static_transform_publisher" name="lidar_to_cam" args="x y z yaw pitch roll camera_frame lidar_frame 100"/> ``` - 对于SLAM或融合算法(如FAST-LIO),需在配置文件中指定外参矩阵[^2]。 #### 5. 常见问题 - **点云畸变**:运动场景下需结合IMU数据进行去畸变,引用[3]提到需联合标定IMU与LiDAR的时间差及外参。 - **标定误差大**:检查标定板角点提取精度,或增加数据采集的多样性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值