什么是:马尔可夫博弈
马尔可夫博弈(Markov Game),也被称为随机博弈(Stochastic Game),是马尔可夫决策过程(MDP)在多智能体环境下的扩展。它描述了多个智能体在一个环境中相互作用的动态过程,每个智能体的决策不仅取决于当前环境状态,还会影响其他智能体的决策以及环境的后续状态。
马尔可夫博弈由以下几个关键要素组成:
- 智能体集合:包含多个智能体,每个智能体都有自己的目标和决策能力。
- 状态空间:环境所有可能的状态集合。
- 动作空间:每个智能体在每个状态下可以采取的动作集合。
- 转移概率:描述在当前状态下,所有智能体采取各自动作后,环境转移到下一个状态的概率。
- 奖励函数:每个智能体在每个状态下采取动作后所获得的奖励,奖励通常与状态、动作以及其他智能体的行为有关。
原理举例:多机器人足球比赛
场景描述
假设有两支机器人足球队进行比赛,每支队伍有多个机器人(智能体)。比赛场地是一个有限的区域,球的位置和机器人的位置构成了环境的状态。每个机器人可以采取不同的动作,如移动、传球、射门等。
要素分析
- 智能体集合:两支球队的所有机器人构成了智能体集合。每个机器人都有自己的任务和目标,