APO:自动化技术提升大语言模型在各类任务中的表现

1810 篇文章 ¥199.90 ¥299.90
1399 篇文章 ¥199.90 ¥299.90
1209 篇文章 ¥199.90 ¥299.90

APO:自动化技术提升大语言模型在各类任务中的表现

APO通过自动化技术提升大语言模型在各类任务中的表现,其核心是一个包含种子提示初始化、候选生成、评估反馈等的五部分统一框架。文中详细分类了APO方法,如基于启发式的词法编辑、强化学习优化等,还介绍了评估指标(任务准确率、奖励模型分数等)及面临的任务不可知、机制不明确等挑战,最后展望了多模态APO等未来方向。


思维导图

## **APO定义与背景**
- 目标:优化提示提升LLM任务性能
- 挑战:模型敏感性、用户使用障碍
## **APO五部分框架**
- 种子提示初始化:手动创建、LLM诱导
- 候选提示生成:启发式编辑、RL、遗传算法
- 推理评估与反馈:数值分数、LLM反馈、人类反馈
- 过滤保留策略:TopK、UCB、区域联合搜索
- 迭代深度:固定步数、可变步数
## **候选生成方法**
- 启发式编辑:蒙特卡洛采样、遗传算法、词汇修剪
- 辅助网络编辑:RL、LLM微调、GAN
- 元提示设计:任务描述整合、历史解融合
- 覆盖式方法:单提示扩展、专家混合、集成方法
- 程序合成:模块化优化、文本转换图
## **评估指标**
- 数值分数:准确率、奖励模型、熵、负对数似然
- LLM反馈:文本反馈生成、多维度批判
- 人类反馈:偏好收集、任务 elicitation
## **挑战与未来方向**
- 任务不可知APO:动态任务适应
- 机制不明确:提示有效性解析
- 系统提示优化:多组件协同
- 多模态APO:跨模态协同优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值