大型语言模型(LLM)的技术面试题

1801 篇文章 ¥199.90 ¥299.90
1390 篇文章 ¥199.90 ¥299.90
1200 篇文章 ¥199.90 ¥299.90

大型语言模型(LLM)的技术面试题

在这里插入图片描述

一、提示校准:减轻提示学习中的偏见

原理:提示校准(Prompt calibration)通过调整提示词的表述方式,减少模型输出中的固有偏见,而非修改模型本身或训练数据。它聚焦于优化输入指令的中立性和精确性,从而引导模型生成更公平的结果。
举例:若要通过LLM筛选简历,原始提示可能包含“优先考虑年轻候选人”,这隐含年龄偏见。通过提示校准,可调整为“根据岗位要求匹配候选人技能,不考虑年龄因素”,使模型输出更符合公平原则。

二、矢量存储的适用场景

原理:矢量存储用于存储文本的语义向量(捕获语义信息),主要支持需要外部知识检索的任务(如RAG系统)。但并非所有文本任务都需要——仅依赖文本自身上下文即可完成的任务无需矢量存储。
无需矢量存储的场景举例

  • 情感分析:判断“这部电影太精彩了!”为积极情感,仅需分析文本本身,无需外部知识。
  • 机器翻译:将“Hello world”译为“你好世界”,依赖句子内部结构和语言规则,无需额
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值