LLM 的Top-P参数 是在LLM中的每一层发挥作用,还是最后一层?

1769 篇文章 ¥199.90 ¥299.90
1358 篇文章 ¥199.90 ¥299.90
1168 篇文章 ¥199.90 ¥299.90

LLM 的Top-P参数 是在LLM中的每一层发挥作用,还是最后一层?

Top-P(核采样)是在大语言模型(LLM)生成文本的最后一步发挥作用,具体来说是在模型输出**原始分数(Logits)**之后、应用Softmax函数生成概率分布之前进行筛选。它的作用机制与Temperature(温度)类似,但逻辑不同,以下从技术原理、代码实现和应用场景三个维度展开说明:

在这里插入图片描述

一、技术原理:仅作用于生成阶段的最后一步

1. LLM的生成流程

LLM生成文本的核心流程可简化为:
输入文本 → 分词 → 多层Transformer处理 → 输出Logits → 后处理(Top-P/Top-K/Temperature) → 采样生成下一个Token
其中,Top-P的筛选操作发生在Logits生成之后、Softmax概率计算之前,属于生成流程的最后一步

2. Top-P的具体作用位置
  • Logits阶段:模型最后一层输出每个Token的原始分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值