0_序章导论

​课程整体框架​

​时长​​:4周
​终极目标​​:
👉 学完后比大公司CEO更懂AI,能领导团队解决实际问题


​每周核心内容分解​

​第一周:重新认识AI的本质​
  1. ​弱AI(ANI) vs. 强AI(AGI)​

    • ​ANI(弱人工智能)​​:
      • ​特点​​:只精通​​单一任务​​(如语音助手、自动驾驶)
      • ​现状​​:已创造巨大价值,未来将在零售、制造、交通等​​非软件行业爆发​
    • ​AGI(强人工智能)​​:
      • ​目标​​:达到或超越​​人类全能智能​
      • ​真相​​:数十年内难以突破,无需担忧"机器人灭绝人类"
  2. ​破除AI神话​

    • 媒体炒作导致误判AGI进展(实际进步主要在ANI)
    • ​案例​​:机器人剪发技术局限(简单发型可行,复杂发型无解 → 技术边界客观存在)
  3. ​关键技术认知​

    • ​机器学习​​:让机器从数据中​​自学规律​​(如教电脑识别猫狗照片)
    • ​深度学习(神经网络)​​:处理​​复杂模式​​的核心技术(如图像/语音识别)
  4. ​关键误区警示​

    • 媒体只报道​​成功案例​​(失败案例无新闻价值)
    • 必须同时研究​​成功与失败​​,才能判断技术可行性

​第二周:构建有价值的AI项目​
  1. ​项目落地方法论​
    • 如何选择​​技术上可行+商业有价值​​的AI项目
    • ​案例学习​​:智能音箱、自动驾驶等成功项目的技术逻辑

​第三周:企业AI转型实战​
  1. ​组织能力建设​
    • 创建AI团队的原则
    • 开发AI产品的流程(从0到1避坑指南)
  2. ​打造"AI优先"公司​
    • 传统企业如何系统性转型为AI驱动型组织

​第四周:AI的社会影响与应对​
  1. ​AI伦理挑战​
    • 系统偏见产生机制(如招聘算法歧视女性)
    • ​解法​​:数据清洗、算法透明度、第三方审计
  2. ​经济与劳动力影响​
    • 对发展中经济体的机遇/冲击
    • 个人与企业适应策略(如技能再培训)

​关键数据与事实补充​

  • ​经济价值​​:麦肯锡预测至2030年,AI将创造​​13万亿美元/年​​新增价值
  • ​行业渗透​​:除软件业外,​​汽车、农业、材料科学​​将成为AI价值高地
  • ​技术边界​​:
    • ANI可优化现有流程(如工厂质检提速50%)
    • AGI暂无突破迹象(需基础科学革命)

​学习者将获得的能力​

✅ ​​判断力​​:识别哪些业务能用AI改造(如客服自动化 vs. 创意设计)
✅ ​​实操力​​:设计AI项目流程 + 避开常见陷阱(如数据质量不足)
✅ ​​领导力​​:驱动团队应对AI变革(技术部署 + 伦理治理)


​贯穿课程的核心理念​

​"不要追逐AGI幻影,聚焦ANI解决现实问题"​
—— 就像用计算器取代算盘(工具升级),而非等待科幻中的超级机器人

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值