【数据聚类|深度聚类】Strongly Augmented Contrastive Clustering(SACC)论文研读

本文介绍了一种名为强增强对比聚类(SACC)的深度聚类方法,它利用强和弱数据增强来提升聚类性能。SACC采用具有三重共享权重的主干网络,生成强和弱增强视图,通过实例级和聚类级对比学习进行联合优化。实验证明,SACC在多个图像数据集上优于现有深度聚类算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

在这里插入图片描述

翻译

深度聚类由于其通过深度神经网络进行联合表示学习和聚类的能力,近年来引起了越来越多的关注。在其最新的发展中,对比学习已经成为一种有效的技术,可以大大提高深度聚类的性能。然而,现有的基于对比学习的深度聚类算法主要集中在一些精心设计的增强(通常具有保留结构的有限变换),称为弱增强,但无法超越弱增强以探索更多机会在更强的增强(更激进的变换甚至是严重的扭曲)中。本文提出了一种称为强增强对比聚类(SACC)的端到端深度聚类方法,扩展了传统的两个增强视图范例到多个视图,并联合利用强增强和弱增强来增强深度聚类。特别地,我们利用一个具有三重共享权重的主干网络,其中融合了一个强增强视图和两个弱增强视图。基于主干网络产生的表示,同时利用弱-弱视图对和强-弱视图对进行实例级对比学习(通过实例投影器)和聚类级对比学习(通过聚类投影器),这些与主干网络一起可以在纯无监督的方式下进行联合优化。在五个具有挑战性的图像数据集上的实验结果显示,我们的SACC方法优于现有的最先进方法

Introduction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐江湖

创作不易,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值