Abstract
翻译
深度聚类由于其通过深度神经网络进行联合表示学习和聚类的能力,近年来引起了越来越多的关注。在其最新的发展中,对比学习已经成为一种有效的技术,可以大大提高深度聚类的性能。然而,现有的基于对比学习的深度聚类算法主要集中在一些精心设计的增强(通常具有保留结构的有限变换),称为弱增强,但无法超越弱增强以探索更多机会在更强的增强(更激进的变换甚至是严重的扭曲)中。本文提出了一种称为强增强对比聚类(SACC)的端到端深度聚类方法,扩展了传统的两个增强视图范例到多个视图,并联合利用强增强和弱增强来增强深度聚类。特别地,我们利用一个具有三重共享权重的主干网络,其中融合了一个强增强视图和两个弱增强视图。基于主干网络产生的表示,同时利用弱-弱视图对和强-弱视图对进行实例级对比学习(通过实例投影器)和聚类级对比学习(通过聚类投影器),这些与主干网络一起可以在纯无监督的方式下进行联合优化。在五个具有挑战性的图像数据集上的实验结果显示,我们的SACC方法优于现有的最先进方法