Linux服务器下安装pytorch

本文详细介绍如何通过创建虚拟环境来避免TensorFlow与PyTorch之间的冲突,并提供激活环境及安装PyTorch的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先创建虚拟环境,为了保证和服务器上的tensorflow环境不发生冲突,为pytorch创建一个虚拟环境,在终端输入如下:

conda create -n pytorch python=3.X #py版本根据实际情况定

之后进行环境的激活操作:

source activate pytorch

接下来在Pytorch的官网,根据自己的机器配置选择对应的安装命令。
在这里插入图片描述
一路安装大功告成。

### 如何在Linux服务器安装PyTorch #### 使用pip安装特定版本的PyTorch 如果需要安装指定路径中的 `.whl` 文件,可以通过 `pip` 工具完成此操作。例如,在 `/home/lihao/torch` 目录下存在名为 `torch-1.7.1-cp39-cp39-linux_aarch64.whl` 的文件,则可运行以下命令来安装该包[^1]: ```bash pip install /home/lihao/torch/torch-1.7.1-cp39-cp39-linux_aarch64.whl ``` #### 配置Anaconda环境并安装PyTorch 对于更复杂的项目需求,推荐使用 Anaconda 来管理 Python 环境以及依赖项。以下是具体步骤: 1. **下载并安装Anaconda** 下载适用于 Linux 平台的 Anaconda 安装脚本,并执行安装程序: ```bash bash Anaconda3-5.0.1-Linux-x86_64.sh ``` 在安装过程中需确认是否将安装路径添加至环境变量中。 2. **使更改生效** 执行以下命令让新设置立即可用: ```bash source ~/.bashrc ``` 3. **创建虚拟环境** 创建一个新的 Conda 虚拟环境(假设名称为 `myenv`),并指定所需的 Python 版本: ```bash conda create -n myenv python=3.9 ``` 4. **激活虚拟环境** 启动刚刚创建好的虚拟环境以便后续操作在此环境中进行: ```bash source activate myenv ``` 5. **通过Conda安装PyTorch及相关组件** 如果目标是 GPU 支持版 PyTorch (基于 CUDA Toolkit 10.2),则应采用如下方式安装[^5]: ```bash conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch ``` #### 利用官方源直接安装最新稳定版PyTorch 当不需要特别定制化安装时,也可以借助 PyTorch 提供的标准方法快速部署其环境。下面展示的是针对 CPU 和 GPU 不同情况下的两种典型做法之一——仅限于 CPU 的场景[^4]: ```bash pip install torch===1.5.1 torchvision===0.6.1 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.douban.com/simple ``` 完成后即可依据个人研究方向开展进一步工作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值