当我深究RAG系统多个环节的优化细节时,脑海突然恍惚出一个问题:
Q:RAG 系统为什么可以对检索到的信息进行逻辑梳理和归纳呢?它不是没学过该内容么?
如果有上述疑问,其实是对通用大模型的本质不了解,本质简要解析如下:
通用大模型的核心不是 “记住的知识多”,而是 “会处理信息的方法”。
很多人觉得它厉害是因为它经过海量数据训练后, “学过的内容广”,知道的多,
但其实更关键的是:它从海量数据中提炼出了通用的逻辑处理能力—— 比如能看懂因果关系(“因为 A 所以 B”)、会归纳共性(从多个例子里找规律)、能对比差异(区分 A 和 B 的不同),就像人类掌握了 “思考方法”,而不是死记硬背 “具体知识”。
这种能力是 “可迁移” 的:哪怕是完全没见过的新信息,它也能套用这些方法去分析。
举个例子:
给大模型一段它从没学过的话 ——“苹果会浮在水面,因为它的密度比水小;石块会沉下去,因为它的密度比水大”。
它不需要 “提前知道苹果和石块的密度”,仅靠对 “因为… 所以…” 这种因果逻辑的理解,就能立刻归纳出:“物体在水中的浮沉,取决于其密度与水的密度大小对比”。
这就像一个学生没读过某篇课文,但能靠 “找因果、抓规律” 的阅读方法,读懂课文并总结中心思想 —— 大模型的 “通用”,靠的是这种 “方法迁移”,而非 “知识记忆”。