基于满足动力学约束下的路径规划(State Lattice Planning,Kinodynamic-RRT*)

总结课程《深蓝学院移动机器人路径规划》

Kinodynamic : Kinematic + Dynamic

1.State Lattice Planning

汽车质点模型不满足动力学约束,需要满足两点之间是可行的运动连接。
1.离散机器人控制空间
在这里插入图片描述

2.离散机器人状态空间
在这里插入图片描述
考虑动力学约束后,建立一个机器人模型,由状态和输入描述。S˙=f(s,u)\dot{S}=f(s,u)S˙=f(s,u)
当给系统不同的输入,持续一定的时间T。(离散机器人控制空间)
在这里插入图片描述(没有任务导向性,效率相对低。)
当选择两个状态,找到两个状态之间的输入控制(u,T)。(离散机器人状态空间)
在这里插入图片描述(导向性,难以实现)


Sample in control space
在这里插入图片描述在这里插入图片描述
当确定末状态后,解算中间状态。状态转移方程:
在这里插入图片描述


2.1 Boundary Value Problem

在这里插入图片描述

2.2 Optimal Boundary Value Problem (OBVP)

从一个状态到另一个状态,使得其JkJ_kJk最小值。
J∑=∑k=13Jk,Jk=1T∫0Tjk(t)2dtJ_{\sum}=\sum_{k=1}^3{J_k},J_k={1 \over T}\begin{array}{cc} \int_0^T{ j_k(t)^2 dt }\end{array}J=k=13Jk,Jk=T10Tjk(t)2dt状态:Sk=(pk,vk,ak)S_k=(p_k,v_k,a_k)Sk=(pk,vk,ak) ,输入uk=jku_k=j_kuk=jk
系统模型:Sk˙=fs(sk,uk)=(vk,ak,jk)\dot{S_k}=f_s(s_k,u_k)=(v_k,a_k,j_k)Sk˙=fs(sk,uk)=(vk,ak,jk)

利用极小值原理:
在这里插入图片描述
引入协态costate:λ=(λ1,λ2,λ3)\lambda=(\lambda_1,\lambda_2,\lambda_3)λ=(λ1,λ2,λ3),由系统变量决定。
定义Hamiltonian function:H(s,u,λ)=1Tj2+λTfs(s,u)H(s,u,\lambda)={1\over T}j^2+\lambda^Tf_s(s,u)H(s,u,λ)=T1j2+λTfs(s,u)得到最优的状态量sss,最优输入uuu

3.Planning in Frenet-serret Frame

在这里插入图片描述

4.混合A* (Hybrid A*)

在这里插入图片描述
在每个栅格中保证只存在一个节点。
启发函数的设计:
在这里插入图片描述

5.基于运动学约束的RRT*

1.(Sample)在整个状态空间采样,包括位置和速度。
2.(Near)利用optimal control将新找到的节点和邻近节点进行OBVP连接。
3.(ChooseParent)以最优控制cost指标为半径的球,范围内的节点。
4.(find near nodes efficiently)后向可达集
在这里插入图片描述
5.(Rewire)前向可达集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秃头队长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值