机器学习核心算法1—线性回归详解

本文深入探讨了多元线性回归模型的构建方法,包括使用最小二乘法和最大似然估计确定最佳参数,以及通过数学分析和代码实现进行模型求解。介绍了如何判断数据集的线性分布特性,并通过实例演示了模型的建立过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.线性回归

1.1先修知识

1.1.1最小二乘法
1.1.2最大似然估计
1.1.3矩阵基础

1.2解析方法求多元线性回归模型

1.2.1 数学分析

1首先判断,这是一个呈线性分布的数据集
2根据数据集得出判别函数
3根据最小二乘法,得出损失函数,即让损失函数最小的参数最理想
4将损失函数带入二项分布
5根据最大似然估计,得出表达式

1.2.2 代码实现

1.3梯度下降方法求多元线性回归模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值