Linux以及windows使用conda创建新torch-gpu环境(通用)

本文介绍了如何使用conda创建名为py37的python3.7环境,激活环境,查看CUDA版本,并基于CUDA11.0安装兼容的PyTorch1.10.0、torchvision0.11.0和torchaudio0.10.0,最后验证CUDA可用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        1.conda create -n py37 python=3.7  创建python 3.7的环境

        环境名字为py37,名字按自己的想法改

conda create -n your_env_name python=x.x

2.打开创建的环境

conda activate 你的环境名字

        如果忘记名字可使用以下命令查看有哪些环境

conda info --envs

3.到pythorch官网,安装cuda对应版本的以及+你想要torch版本的包,进行组合选择

        首先使用 

nvidia-smi

        查看CUDA版本

        我的是CUDA Version 11.0

    但是我想使用torch-1.10的版本所以我选择CUDA=10.2的,因为毕竟向下兼容,即 11.0兼容10.2

conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=10.2 -c pytorch

        然后静静等待安装,出现问号?输入yes

        安装好后

4.验证

        分次输入一下三串

python
import torch
print(torch.cuda.is_available())

        输出结果: Ture

完成-------------------------------------------------------------------------------------------------------------OVER

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值