import tensorflow as tf
import numpy as np
dataset=tf.data.Dataset.from_tensor_slices([1,2,3,4,5,6,7,8,9]) #对数组进行切片存储
for e in dataset:
print(e) #这样输出的是tf.Tensor类型
for e in dataset:
print(e.numpy()) #转化成正常数组类型
dataset_2=tf.data.Dataset.from_tensor_slices([[1,2],[3,4],[5,6],[7,8]])
for e in dataset_2:
print(e)
for e in dataset_2:
print(e.numpy())
#对字典进行切片,将会把abcd各一个数据拿出作为一个切片
dataset_3=tf.data.Dataset.from_tensor_slices({
'a':[1,2,3,4],
'b':[5,6,7,8],
'c':[9,10,11,12],
'd':[13,14,15,16]
})
for e in dataset_3:
print(e)
for e in dataset_2.take(2): #从切片集合中拿出2个切片
print(e)
#从切片中,按顺序拿取5个数据进入缓冲区,随机从缓冲区拿取以一个放入队列中,将得到的新队列作为新的
#数据集。本质上是对数据进行打乱操作。缓冲区的大小影响着顺序的混乱程度
dataset=dataset.shuffle(5)
for e in dataset:
print(e)
dataset=dataset.shuffle(1)
for e in dataset:
print(e)
#扩充数据集,参数count为重复的次数,count=3即将数据集扩充3倍,之前加入shuffle后,每次扩充的结果#也会被打乱
dataset=dataset.repeat(count=3)
for e in dataset:
print(e)
#batch操作将数据按顺序3个3个的打包成一个新的数据,在参数为batch_size=3的情况下
dataset=dataset.batch(3)
for e in dataset:
print(e)
Tensorflow2.0基础-笔记- tf.data模块使用
最新推荐文章于 2023-12-20 18:19:19 发布