【论文阅读】ResNeSt: Split-Attention Network

ResNet 改进版新作,性能强悍,在多个任务上霸榜!

论文链接:https://hangzhang.org/files/resnest.pdf

代码链接:https://github.com/zhanghang1989/ResNeSt


摘要

近年来,图像分类模型不断发展,但由于其结构简单、模块化,大多数随之出现下游应用如目标检测、语义分割等仍然采用 ResNet 变体作为 backbone。我们提出了一个模块化的分散注意力块 (Split-Attention block),使注意力能够跨越 feature map group。通过堆叠这些 ResNet 风格的 Split-Attention block,我们得到了一个新的 ResNet 变体,我们称之为 ResNeSt 。我们的网络保留了整个ResNet 结构,可直接用于下游任务而不会增加计算成本。ResNeSt 模型的性能优于其他具有相似模型复杂性的网络。例如,ResNeSt-50 在 ImageNet 使用单裁切 (crop) 大小为 224×224,达到了 81.13% 的 top-1 精度,比以前最佳的 ResNet 变体的精度高出 1% 以上。这一改进也有助于下游任务,包括目标检测、实例分割和语义分割。例如,通过简单地用 ResNeSt-50 替换ResNet-50 backbone,将 MS-COCO 上的 FasterRCNN 的 mAP 从 39.25% 提高到 42.33%,将 ADE20K 上的 DeeplabV3 的mAP 从 42.1% 提高到 45.1%。

图示

性能

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值