19k Star! 最快语音克隆方案 20宝秒,FishSpeech1.5 Windows11本地部署教程(附加速和API)

FishSpeech 1.5 Windows 11 本地部署完全指南

一、环境准备

1.1 硬件要求

  • GPU:推荐 NVIDIA 显卡(RTX 3060 及以上,显存 ≥ 12GB)

  • CPU:支持 AVX2 指令集的 Intel/AMD 处理器(i5 第 8 代或 Ryzen 5 3000 系列以上)

  • 内存:≥ 16GB

  • 存储:预留 ≥ 50GB 空间(模型文件较大)

1.2 系统要求

  • Windows 11 21H2 或更高版本

  • 已启用开发者模式(设置 → 隐私和安全性 → 开发者选项)

二、基础环境配置

2.1 安装 NVIDIA 驱动与 CUDA

  1. 更新显卡驱动至最新版本(通过 GeForce Experience 或 官网

  2. 安装 CUDA 11.8

    • 下载地址:CUDA Toolkit 11.8

    • 安装时勾选 CUDA 和 CUDA Development Tools

  3. 验证安装:

    nvcc --version

2.2 安装 Python 环境

  1. 下载 Python 3.10.6(推荐使用官方构建):

    • 官网下载地址:Python 3.10.6

    • 安装时务必勾选 Add Python to PATH

  2. 安装虚拟环境工具:

    pip install virtualenv

三、项目部署流程

3.1 获取 FishSpeech 1.5 代码

  1. 克隆官方仓库:

    git clone https://github.com/fishaudio/fish-speech.git
    cd fish-speech

    2. 切换到 v1.5 分支: 

git checkout release/1.5

 3.2 创建虚拟环境

virtualenv venv --python=python3.10
venv\Scripts\activate

3.3 安装依赖库

  1. 安装 PyTorch 2.0 + CUDA 11.8:

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

    2安装项目依赖:

  2. pip install -r requirements.txt

    3. 安装附加组件:

    pip install sounddevice pydub webrtcvad

    3.4 下载预训练模型

  3. 从官方渠道获取模型文件(如 fish-speech-1.5.pt),放置于 models/ 目录

  4. 下载示例配置文件 config.yaml 并修改模型路径:

  5. model_path: "./models/fish-speech-1.5.pt"

    四、运行语音合成

    4.1 启动推理服务

    python tools/api.py --config config.yaml --device cuda

4.2 使用示例脚本

创建 demo.py

import requests

text = "欢迎使用FishSpeech,这是一段测试语音。"
response = requests.post(
    "http://localhost:8000/tts",
    json={"text": text, "speaker": "default"}
)

with open("output.wav", "wb") as f:
    f.write(response.content)
print("语音生成完成!")

 运行脚本:

python demo.py

五、高级配置

5.1 多说话人支持

  1. 在 config.yaml 中添加说话人列表:

  2. speakers:
      - name: "speaker1"
        voice_dir: "./data/speaker1/"
      - name: "speaker2"
        voice_dir: "./data/speaker2/"

  3. 准备至少 10 条参考音频(每个说话人)

  4. 修改批处理大小(根据显存调整):

  5. 5.2 性能优化

    batch_size: 4  # 默认值,显存不足时可降低至2

    开启半精度推理:

六、常见问题排查

6.1 CUDA Out of Memory

  • 降低 batch_size

  • 添加 --precision fp16 启动参数

  • 重启释放显存占用

6.2 依赖冲突

使用 pip check 检查冲突,通过 pip install --upgrade 更新冲突包版本。

6.3 音频生成失败

  • 检查模型路径是否正确

  • 确保配置文件编码为 UTF-8

  • 查看日志文件 logs/api.log


七、注意事项

  1. 首次运行需联网下载必要资源

  2. 推荐使用 VS Code 作为开发环境

  3. 模型文件需遵守开源协议,禁止商用

通过本教程,您已完成 FishSpeech 1.5 的完整部署。建议定期拉取官方仓库更新以获取最新功能修复。如需训练自定义模型,需额外准备至少 10 小时标注语音数据。

### Fish Speech 语音合成开源项目介绍 Fish Speech 是一个旨在提供高质量、易用且功能强大的语音合成解决方案的开源项目[^1]。该项目融合了多项先进的语音合成技术,不仅为研究者开发者提供了丰富的工具集,也为普通用户带来了一种全新的语音交互方式。 #### 主要特点 - **即时语音克隆**:通过提供一小段语音样本,Fish Speech 能够迅速生成与该声音极为相似的人工智能语音,支持个性化的声音定制[^3]。 - **完全开源**:整个项目的源代码均对外公开,允许任何人查看、修改并贡献自己的改进版本,促进了社区的发展技术的进步[^2]。 - **多功能集成**:除了基本的文字转语音(TTS) 功能外,还包含了多种高级特性,如情感表达调整、多语种支持等,满足不同场景下的需求。 ### 使用方法概述 为了开始使用 Fish Speech 进行开发或者实验,在本地环境中安装必要的依赖项之后,可以按照如下指南操作: 对于 Python 用户来说,可以通过 pip 工具轻松安装此库: ```bash pip install fish-speech ``` 初始化 TTS 引擎实例,并加载预训练模型文件: ```python from fish_speech import TextToSpeech tts = TextToSpeech(model_path='path/to/model') ``` 利用简单的 API 接口实现文字到语音转换过程: ```python audio_output = tts.synthesize(text="你好世界") with open('output.wav', 'wb') as f: f.write(audio_output.get_wav_data()) ``` 以上代码片段展示了如何将一段中文文本转化为对应的音频数据流,并保存成 WAV 文件格式供后续播放或其他处理用途。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值