肿瘤,生物医学,统计

TNM分期系统用于评估肿瘤的发展阶段,T指肿瘤原发灶,N指区域淋巴结,M指远处转移。交叉验证是统计学中的重要方法,包括K折交叉验证、Bootstrapping和Holdout验证,用于评估模型对训练集外数据的泛化能力。K折交叉验证是最常用的方式,能有效评估分类器性能,而Holdout验证由于数据分组的随机性,其结果可能不够稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • TNM分期系统
  • 每一种肿瘤的TNM分期系统各不相同,因此TNM分期中字母和数字的含义在不同肿瘤所代表的意思不同。TNM分期中T,N,M确定后就可以得出相应的总的分期,即I期,II期,III期,IV期等。有时候也会与字母组合细分为IIa或IIIb等等。I期的肿瘤通常是相对早期的肿瘤有着相对较好的预后。分期越高意味着肿瘤进展程度越高。
  • TNM分期系统中:1,T(“T”是肿瘤一词英文“Tumor”的首字母)指肿瘤原发灶的情况,随着肿瘤体积的增加和邻近组织受累范围的增加,依次用T1~T4来表示。2, N(“N”是淋巴结一词英文“Node”的首字母)指区域淋巴结(regional lymph node)受累情况。淋巴结未受累时,用N0表示。随着淋巴结受累程度和范围的增加,依次用N1~N3表示,3,M(“M”是转移一词英文“metastasis”的首字母)指远处转移(通常是血道转移),没有远处转移者用M0表示,有远处转移者用M1表示。在此基础上,用TNM三个指标的组合(grouping)划出特定的分期(stage)。

-交叉验证
在使用训练集对参数进行训练的时候,经常会发现人们通常会将一整个训练集分为三个部分(比如mnist手写训练集)。一般分为:训练集(train_set),评估集(valid_set),测试集(test_set)这三个部分。这其实是为了保证训练效果而特意设置的。其中测试集很好理解,其实就是完全不参与训练的数据,仅仅用来观测测试效果的数据。而训练集和评估集则牵涉到下面的知识了。
因为在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初始条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。因此我们通常并不会把所有的数据集都拿来训练,而是分出一部分来(这一部分不参加训练)对训练集生成的参数进行测试,相对客观的判断这些参数对训练集之外的数据的符合程度。这种思想就称为交叉验证(Cross Validation)

  • 交叉验证(Cross Validation),有的时候也称作循环估计(Rotation Estimation),是一种统计学上将数据样本切割成较小子集的实用方法,该理论是由Seymour Geisser提出的。
    在给定的建模样本中,拿出大部分样本进行建模型,留小部分样本用刚建立的模型进行预报,并求这小部分样本的预报误差,记录它们的平方加和。这个过程一直进行,直到所有的样本都被预报了一次而且仅被预报一次。把每个样本的预报误差平方加和,称为PRESS(predicted Error Sum of Squares)。
  • 交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标。
  • K-fold cross-validation
    K折交叉验证,初始采样分割成K个子样本,一个单独的子样本被保留作为验证模型的数据,其他K-1个样本用来训练。交叉验证重复K次,每个子样本验证一次,平均K次的结果或者使用其它结合方式,最终得到一个单一估测。这个方法的优势在于,同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次,10折交叉验证是最常用的 。

还有一种比较特殊的交叉验证方式,Bootstrapping: 通过自助采样法,即在含有 m 个样本的数据集中,每次随机挑选一个样本,再放回到数据集中,再随机挑选一个样本,这样有放回地进行抽样 m 次,组成了新的数据集作为训练集。
这里会有重复多次的样本,也会有一次都没有出现的样本,原数据集中大概有 36.8% 的样本不会出现在新组数据集中。
优点是训练集的样本总数和原数据集一样都是 m,并且仍有约 1/3 的数据不被训练而可以作为测试集。
缺点是这样产生的训练集的数据分布和原数据集的不一样了,会引入估计偏差。
此种方法不是很常用,除非数据量真的很少。

  • Holdout 验证
  • 方法:将原始数据随机分为两组,一组做为训练集,一组做为验证集,利用训练集训练分类器,然后利用验证集验证模型,记录最后的分类准确率为此Hold-OutMethod下分类器的性能指标.。Hold-OutMethod相对于K-fold Cross Validation 又称Double cross-validation ,或相对K-CV称 2-fold cross-validation(2-CV)
    一般来说,Holdout 验证并非一种交叉验证,因为数据并没有交叉使用。 随机从最初的样本中选出部分,形成交叉验证数据,而剩余的就当做训练数据。 一般来说,少于原本样本三分之一的数据被选做验证数据。
  • 优点:好处的处理简单,只需随机把原始数据分为两组即可。
  • 缺点:严格意义来说Hold-Out Method并不能算是CV,因为这种方法没有达到交叉的思想,由于是随机的将原始数据分组,所以最后验证集分类准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性.(主要原因是 训练集样本数太少,通常不足以代表母体样本的分布,导致 test 阶段辨识率容易出现明显落差。此外,2-CV 中一分为二的分子集方法的变异度大,往往无法达到「实验过程必须可以被复制」的要求。)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算小屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值