机器人 - 无人机基础(6) - 状态估计(ing)

无人机状态估计与坐标系解析

目录

一、组合导航

1.1 状态估计是什么

二、飞行器的坐标系

2.1 三维笛卡尔直角坐标系

三、方向余弦矩阵和欧拉角

3.1 方向余弦矩阵

3.1.1 一些基本数学概念

3.1.2 方向余弦矩阵部分

3.2 姿态与欧拉角

3.2.1 欧拉角简单介绍

3.2.2 欧拉角定轴转动表示矩阵

3.3 四元数

3.3.1 四元数定义


一、组合导航

1.1 状态估计是什么

首先,飞行器要获取状态信息,但是通过单独的传感器容易造成误差累积;组合导航结合GNSS、惯性测量元件、磁力计、气压计、超声波等设备进行多传感器融合,得到较为准确的状态空间量,这个过程成为状态估计;

二、飞行器的坐标系

2.1 三维笛卡尔直角坐标系

指的是三条相互垂直的坐标轴,相交形成的坐标系,交点成为原点O,每个坐标轴指向特定方向;
两个不同坐标轴决定的面成为笛卡尔平面;

我们主要需要研究 飞行器<位置、速度> 以及 <姿态>;

(1).大地坐标系用e或者G表示,一般把起飞点当原点,X-Y-Z方向为北-东-地,用于研究飞行器相对于大地的运动状态、空间位置坐标;
(2).机体坐标系用b或者B表示,坐标原点为机体重心,X-Y-Z方向为机身前-右-下,用于研究飞行器相对于重心的旋转运动;

三、方向余弦矩阵和欧拉角

3.1 方向余弦矩阵

3.1.1 一些基本数学概念

(1).对于任意矢量a,它在某个单位矢量上的投影,等于a与b的数量积,a \cdot b = |a||b|cos(\theta)

3.1.2 方向余弦矩阵部分

对于大地坐标系e,有:

对于机体坐标系b,有:

上面这里只是先说明一下,这机体坐标系中的i j k 和 大地坐标系中的 I J K是单位矢量;




我们这里可以把机体坐标系的三个轴的单位矢量在大地坐标系中表示,用的方法是把每个矢量投影到大地坐标系上去,
投影的基本概念: 矢量在某一轴的投影长度,等于矢量的模长乘以矢量与该轴夹角的余弦值;

那么我们得出了第二个等号右边的公式,注意这里用的是X,

矢量与某轴夹角的余弦 等价于 矢量与该轴单位向量夹角的余弦;

这个比较好理解,我们再乘上一个单位向量的模,得到第三个等号右边的公式,

为什么要乘上一个单位向量的模呢?
a \cdot b = |a||b|cos(\theta)

因为这个公式,这样我们就可以把长长的一条,转换成内积;



然后我们可以按照上述方式,把机体坐标轴中的 Y与Z 轴的单位向量 j 和 k 也投影到大地坐标系上面去,就会形成下列矩阵;


反过来,大地坐标系也可以投到机体坐标系上面去(大地坐标系的矢量用机体坐标系表示);



方向余弦矩阵的作用:坐标间矢量的“翻译器”
比如在大地中,重力矢量为


假如想知道,它在机体坐标系b中的投影(加速度计测得的重力分量),那么可以

反之



矩阵的正交性:
方向余弦矩阵是正交矩阵,所以满足以下两个特性,
(1).互逆关系

(2).单位性:矩阵各行各列都是单位矢量,并且两两正交(点积为0);



我们了解这些什么用?
比如重力矢量这里,无人机悬停的时候,机体坐标系的加速度计测得矢量g^b,我们可以通过方向余弦矩阵(DCM)转换为 大力坐标系的重力参考,来判断无人机自身姿态;

3.2 姿态与欧拉角

3.2.1 欧拉角简单介绍

三个欧拉角:
俯仰角 \theta


横滚角 \phi


偏航角 \psi



相同姿态,不同取法会得到不同欧拉角,
这里用的顺序是Z-Y-X,就是先绕Z轴,再Y,最后X的旋转,达到最终姿态;
其中:

俯仰角 \theta (Pitch)抬头为正,
偏航角 \psi (Yaw) 正北为x轴,机头与x轴偏东为正;
横滚角 \phi (Roll) 绕x轴转,右滚为正;
注意:这里x轴指向北,y指向东,z指向地;

3.2.2 欧拉角定轴转动表示矩阵

这里主要是尝试按上面说的 按Z-Y-X旋转,从大地坐标系e,转换到机体坐标系b

(1).围绕Z轴旋转:

这个比较好理解,可以看右边那个平面视图,Z轴这里是朝着我们,所以看不见,把e坐标系绕着Z轴,旋转\psi得到1坐标系;


 

(2).围绕Y轴旋转:
与上面同理,这时候绕Y轴旋转,并且Y轴是指向我们的;



(3).围绕X轴旋转:


然后取得 大地坐标系e 到 机体坐标系b 的旋转矩阵:

这里右下e和右上b,是指 e坐标系 转换到 b坐标系,或者说e指向b;


这里我们可以看到,当\theta=90°的时候,会出现除数为0的奇点,在物理空间称为万向节死锁问题;这里需要引入四元数运算法来求欧拉角;

3.3 四元数

3.3.1 四元数定义

四元数包含四个元素 q_0 q_1 q_2 q_3


作者:Timothy D. Barfoot ,最新2018高清资源,完整395页,持续更新。 版权归作者所有,任何形式转载请联系作者。 State Estimation for Robotics早已在SLAM领域广为流传,几乎是SLAM入门必读的经典书籍之一。本书深入讲解了状态估计的机理、三维几何学基础、矩阵李群以及位姿和点的估计方法等,尤其对基于滤波器的状态估计方法的介绍全面深刻。现在在高翔、颜沁睿、刘富强等十多位SLAM专家、爱好者的共同努力下,中文译本《机器人学中的状态估计》也终于得以面世。这对于国内广大SLAM爱好者来说,可谓一大福音,值得隆重推荐。 ——浙江大学教授,CAD & CG国家重点实验室计算机视觉团队带头人,章国锋 State Estimation for Robotics是加拿大多伦多大学Barfoot教授的名著,也是机器人方向的经典教材之一。该书侧重数学基础,先花了三分之二的篇幅来介绍概率、几何方面的基础知识,最后又回到应用问题,详细介绍了基于点云和图像的姿态估计。 这是一本难得的既注重基础又顾及前沿研究问题的教材。书的译者是一群对机器人技术富有激情的年轻人,他们中的许多人在计算机视觉、机器人等科研领域开始崭露头角。这本译作倾注了他们的满腔热忱和对国内技术发展的期望。 ——加拿大西蒙弗雷泽大学终身教授,谭平 本书介绍了机器人领域的重要核心技术——状态估计。这本书不只介绍了一些传统的经典算法,也涉及了最新的行业进展和应用,同时还传授了一些基础的数学工具。本书使用严谨的数学语言,同时又深入浅出,是初学者不可多得的良师益友。 ——自动驾驶公司AutoX创始人,原美国普林斯顿大学计算机视觉与机器人实验室主任,麻省理工学院博士 肖健雄
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值