自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 模型剪枝整理与总结

快速部署:优先权重幅度或BN缩放因子剪枝,配合简单微调。高精度保留:采用重建误差评估+渐进式剪枝,结合知识蒸馏。硬件加速优先:结构化剪枝为主,避免不规则稀疏模式。

2025-06-20 14:26:13 929

原创 权重量化整理与总结

快速部署场景:优先训练后8位逐层量化,配合MinMax量化策略。高精度需求场景:采用量化感知训练+逐通道量化,或混合精度量化。极致压缩场景:尝试二值化/三值化,但需配合网络架构优化(如残差连接、特征复用)。

2025-06-20 13:14:54 685

原创 知识整理整理与总结

方法选择建议快速轻量化:优先输出层软标签蒸馏,配合温度自适应策略。高精度保留:采用中间层特征蒸馏+注意力引导,适合异构模型迁移。数据稀缺场景:自蒸馏+伪标签生成,减少对标注数据的依赖。当前技术趋势自动化知识蒸馏(Auto-KD):通过神经架构搜索(NAS)自动设计蒸馏策略(如最优蒸馏损失组合、学生模型架构)。多教师协同蒸馏:集成多个不同教师模型的知识(如跨任务教师、跨模态教师),提升学生模型的泛化能力。

2025-06-20 13:03:26 280

原创 高效结构设计整理与总结

通过优化神经网络的拓扑结构、计算单元和连接方式,在减少参数量、计算复杂度的同时保持或提升模型性能。高效结构设计的核心是平衡模型表达能力与计算效率,关键挑战在于如何在资源受限条件下(如移动端、边缘设备)设计兼具轻量化和高精度的网络架构。

2025-06-20 12:59:18 374

原创 低秩分解整理与总结

方法选择建议快速部署场景:优先选择训练后分解方法,如矩阵 SVD 训练后分解,实现简单且能快速压缩模型。高精度需求场景:采用分解感知训练方法,如张量 Tucker 分解感知训练,以减少精度损失。对计算复杂度敏感的场景:选择计算复杂度较低的分解方法,如矩阵 SVD 分解,同时结合硬件加速。当前技术趋势自适应低秩分解:根据模型的不同层和不同任务的特点,自适应地选择合适的秩和分解方法,以实现更好的精度和效率平衡。

2025-06-20 12:55:30 391

原创 2021-11-14

解决git clone报错fatal: unable to access ‘https://github将命令里面的https改为git

2021-11-14 21:42:14 306

原创 2021-11-13

Pytorch学习(1)—— 构建网络模型的四种操作利用pytorch来构建网络模型有很多种方法,以下简单列出其中四种。假设构建一个网络模型如下: 卷积层–Relu层–池化层–全连接层–Relu层–全连接层首先导入几种方法用到的包:import torchimport torch.nn.functional as Ffrom collections import OrderedDict需要注意的是,无论哪种方法,每一层层中的参数都是可以从外部传进去的,在初始化阶段传入参数;super里的第一

2021-11-13 23:53:38 66

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除