MATLAB函数——newff()

本文介绍了如何使用newff()创建BP神经网络,详细讲解了输入特征范围设定、隐含层和输出层神经元数量、转移函数选择(如logsig、tansig等)、训练方法(如traingdx)以及关键参数设置,如最大训练次数和精度要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

newff()表示创建一个BP神经网络
net = newff( A, [j i] , { ‘logsig’ ‘purelin’ } , ‘traingdx’ ) ;
第一个元素用来限定输入特征的范围,通常A=minmax(input) ;

第二个元素表示隐含层j与输出层i神经元的数目;

第三个变量用来表示转移函数:
{隐层神经元的传输函数,输出层的传输函数}
logsig:单极性S函数
tansig:双极性S函数(双曲正切函数)
sigmoid:S型生长曲线(挤压函数)
purelin:线性函数

第四个元素表示训练方法:
traingdx:梯度下降
trainlm:集合了梯度下降法和牛顿法的方法;

net.trainparam.show = 50 ;%显示训练迭代过程,50个周期后显示一下收敛曲线的变化
net.trainparam.epochs = 1000 ;%最大训练次数
net.trainparam.goal = 0.0001 ;%训练要求的精度
net.trainParam.lr = 0.01*j;%学习率

新版Matlab神经网络训练函数Newff的详细讲解-新版Matlab神经网络训练函数Newff的使用方法.doc 本帖最后由 小小2008鸟 于 2013-1-15 21:42 编辑 新版Matlab神经网络训练函数Newff的详细讲解 一、   介绍新版newffSyntax·          net = newff],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) Descriptionnewff],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) takes several arguments PR x Q1 matrix of Q1 sample R-element input vectorsTSN x Q2 matrix of Q2 sample SN-element target vectorsSiSize of ith layer, for N-1 layers, default = [ ]. TFiTransfer function of ith layer. (Default = 'tansig' for hidden layers and 'purelin' for output layer.)BTFBackpropagation network training function BLFBackpropagation weight/bias learning function IPFRow cell array of input processing functions. OPFRow cell array of output processing functions. DDFData divison function ExamplesHere is a problem consisting of inputs P and targets T to be solved with a network.·          P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];Here a network is created with one hidden layer of five neurons.·          net = newff;The network is simulated and its output plotted against the targets.·          Y = sim;plotThe network is trained for 50 epochs. Again the network's output is plotted.·          net.trainParam.epochs = 50;net = train;Y = sim; plot 二、   新版newff与旧版newff调用语法对比 Example1比如输入input(6*1000),输出output为(4*1000),那么旧版定义:net=newff,[14,4],{'tansig','purelin'},'trainlm');新版定义:net=newff; Example2比如输入input(6*1000),输出output为(4*1000),那么旧版定义:net=newff,[49,10,4],{'tansig','tansig','tansig'},'traingdx');新版定义:net=newff; 更详细请看word文档 新版Matlab神经网络训练函数Newff的使用方法.doc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值