2021四川紧急选调/国考备考策略----申论/行测(2020.8.22号开始)

本文详细介绍了2021年四川紧急选调和国考的申论与行测备考策略。申论部分强调了五大题型的学习,备考分为资料准备、复习答题和冲刺阶段,推荐使用真题和智能批改工具。行测备考则包括五大题型的复习,制定复习计划,通过模块练习和真题套题提升速度和准确率。建议考生充分利用碎片时间,结合视频教程进行学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 申论

1.1 申论题型

申论部分一共有五大题型(归纳概括、提出措施、综合分析、公文写作、大作文)

1.2 申论备考策略

这五个题型在国考中是一样出一个,一共五道题;省考是在前四个小题中选三个,到底选哪个谁也不知道,所以无论参加国考还是省考这五大题型都得学明白。申论高分真谛在于只做真题,国考真题以及各个省的真题。反复做反复批改校正答案。归纳总结。

1.3 申论做题顺序及复习阶段

### 1.2 申论备考策略

  • 第一步(3-7天):准备资料。

收集近五年的目标省市的申论真题。最好是打印出来,不要做电子稿。申论用电子稿练习的效率会很低。TB购买方格答题纸,随便搜随便买,红笔、蓝笔、黑笔也需要备好。黑笔-自己标注答题、蓝笔对照答案后重新修改自己的答案、红笔最后誊写标准答案在自己的答案旁边。

  • 第二步(20天) :复习答题。

资料准备齐全了之后,考生可以从年份最近两年的试卷开始按自己的想法答题,(别写在方格纸上,找一张白纸写就好了,别浪费纸),在写的过程中了解试卷结构以及大致题型。五年的真题,省考+国考就算十份试卷,第一遍(除了大作文,其他都做)
:按照年份排列全部认真做一次,并总结心得体会,最好分题型总结。第二遍(同上) :分题型认真比较,按题型类型再做 一次,
比如:归纳概括以此类推。第三遍:只看自己前面做的答案(红

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在Android开发中,为了提升用户体验和视觉效果,背景模糊化处理是一种常用的设计手段。它可以为应用界面增添层次感,同时突出显示主要内容。本文将详细介绍如何在Android中实现背景模糊化功能。 首先,我们需要获取当前设备的壁纸作为背景。这可以通过WallpaperManager类来完成。调用WallpaperManager.getInstance(this.getContext())可以获取壁纸管理器实例,然后通过getDrawable()方法获取当前壁纸的Drawable对象。接下来,需要将壁纸Drawable转换为Bitmap对象,因为模糊处理通常需要在Bitmap上进行。可以通过((BitmapDrawable) wallpaperDrawable).getBitmap()来完成这一转换。 模糊处理的核心是使用Android的RenderScript API。RenderScript是一种高效的并行计算框架,特别适合处理图像操作。在blur()方法中,我们创建了一个RenderScript实例,并利用ScriptIntrinsicBlur类来实现模糊效果。ScriptIntrinsicBlur提供了设置模糊半径(setRadius(radius))和执行模糊操作(forEach(output))的方法。模糊半径radius可以根据需求调整,以达到期望的模糊程度。 然而,仅依赖ScriptIntrinsicBlur可能无法达到理想的模糊效果,因此我们还需要对原始图片进行缩放处理。为此,我们设计了small()和big()方法。先将图片缩小(small()),然后执行模糊操作,最后再将图片放大(big())。这种方式不仅可以增强模糊效果,还能在一定程度上提高处理速度。在small(
<think>好的,我现在需要帮助用户解决如何用C语言批量读取JPEG图片,并将其转换为YUV420格式的问题。首先,我得理清楚用户的需求。用户提到的流程是:JPEG→RGB888→YUV444→YUV420。那每个步骤的具体实现方法是什么呢? 首先,读取JPEG文件。C语言处理JPEG通常需要使用库,比如libjpeg。用户可能没有提到库的选择,所以需要建议使用libjpeg或者stb_image.h。可能用户对这两个库不熟悉,需要简单说明。不过libjpeg是比较标准的,但编译可能麻烦;而stb_image.h是单头文件,更方便。这里可能需要权衡,但用户可能希望简单,所以推荐stb_image。 接下来,读取到RGB888数据。这一步主要是调用库函数读取图片,获取RGB数据。需要检查是否正确加载,处理可能的错误,比如文件无法打开或解码失败。 然后,RGB转YUV444。这里需要颜色空间的转换公式。用户可能不知道具体的公式,需要给出正确的转换矩阵。例如,YUV的计算公式,可能参考BT.601或BT.709标准。这里可能需要确定使用哪个标准,通常BT.601更常见,所以应该用那个公式。 接下来是YUV444转YUV420。这一步涉及到下采样,将UV分量从每个像素一个采样变为每2x2像素一个采样。也就是说,取平均值或者直接取左上角的像素值。用户可能需要知道如何遍历YUV444的数据,然后对UV进行下采样,生成YUV420的数据结构。 另外,批量处理的话,需要遍历目录中的文件,逐个处理。C标准库处理目录可能不太方便,需要用到dirent.h这样的库,或者在Windows下使用FindFirstFile等。但用户可能希望跨平台,所以建议使用dirent.h,并给出示例代码片段。 关于代码结构,可能需要分步骤:加载所有JPG文件,循环处理每个文件,每个文件进行读取、转换、保存。保存YUV420可能需要将Y、U、V三个平面依次写入文件,或者按照YUV420的格式排列数据。 可能的错误点包括:内存管理,因为读取大图可能需要动态分配内存;颜色转换时的整数与浮点运算,需要注意精度和溢出;下采样时的边界处理,特别是当图像宽高不是偶数时,如何处理最后一列或行。 需要提醒用户注意的事项:确保图像的宽度和高度是偶数,否则YUV420转换会出问题。比如,如果图像是奇数尺寸,可能需要裁剪或者填充。此外,不同的JPEG可能使用不同的色彩空间,比如有些可能已经是YUV,所以需要确认解码后的数据确实是RGB格式。 可能的代码结构大致如下: 1. 使用stb_image.h读取JPEG到RGB数据。 2. 将RGB转换为YUV444。 3. 将YUV444下采样为YUV420。 4. 将YUV420数据写入文件。 5. 释放资源,处理下一个文件。 具体实现时,每个步骤的函数需要详细处理。例如,RGB到YUV的转换函数,可能接受RGB指针和图像尺寸,输出Y、U、V三个数组。然后,下采样函数处理U和V,生成降采样后的数据。 在代码示例中,可能需要动态分配内存,特别是大图像的情况。需要注意内存释放,避免泄漏。例如,使用stbi_image_free释放加载的数据。 另外,YUV420的存储格式可能有不同的排列方式,比如Y平面 followed by U平面 followed by V平面,或者交错的方式。需要明确如何存储,用户可能需要知道标准的YUV420格式是怎样的。 最后,测试部分,用户可能需要验证转换后的YUV文件是否正确,可能需要用其他工具播放或查看。可以建议使用ffmpeg或其他视频工具来验证YUV文件。 总结步骤: - 批量读取:遍历目录,处理每个.jpg文件。 - 读取JPEG到RGB:使用库函数。 - RGB转YUV444:应用转换公式。 - YUV444转YUV420:下采样UV分量。 - 写入YUV420文件:按照平面顺序存储。 - 错误处理和资源释放。 需要确保代码示例的正确性,比如指针操作、循环遍历像素、内存分配是否正确。此外,处理大文件时,效率问题也需要考虑,但用户可能更关注正确性而非优化。 可能的问题还有,如何保存YUV420数据?每个YUV分量是单独存储还是交织?通常YUV420 planar格式是Y全量,然后U和V每2x2一个样本,按平面排列。所以代码中需要将Y、U、V三个平面分别写入,其中U和V的尺寸是原图的1/2每个维度。 例如,对于分辨率为WxH的图像,Y分量是W*H个字节,U和V各是(W/2)*(H/2)个字节。所以在内存中分配YUV420的大小为W*H + 2*(W/2)*(H/2) = W*H * 1.5倍,这正是YUV420的常见大小。 因此,在代码中,转换后的YUV420需要三个数组:Y全尺寸,U和V四分之一尺寸。然后依次写入文件,先Y,后U的所有样本,再V的所有样本。 综上,分步骤实现,并注意各个转换过程中的细节,如边界处理、内存分配、正确的下采样方法等。</think>我将分步骤为您解释如何使用C语言实现JPEG到YUV420的批量转换流程。以下是详细实现思路和代码示例: 1. **准备工作** - 安装必要的库: ```bash # 推荐使用单文件库 stb_image.h(处理JPEG)和 stb_image_write.h(可选调试用) wget https://raw.githubusercontent.com/nothings/stb/master/stb_image.h ``` 2. **核心代码结构** ```c #include <stdio.h> #include <stdlib.h> #include <dirent.h> #include "stb_image.h" #define CLAMP(x) ((x) < 0 ? 0 : ((x) > 255 ? 255 : (x))) /* RGB888转YUV444 */ void rgb2yuv444(unsigned char* rgb, int width, int height, unsigned char* y, unsigned char* u, unsigned char* v) { for (int i = 0; i < width * height; ++i) { int r = rgb[3*i]; int g = rgb[3*i+1]; int b = rgb[3*i+2]; // BT.601转换公式 y[i] = CLAMP( ( 66*r + 129*g + 25*b + 128) >> 8 + 16 ); u[i] = CLAMP( ( -38*r - 74*g + 112*b + 128) >> 8 + 128 ); v[i] = CLAMP( ( 112*r - 94*g - 18*b + 128) >> 8 + 128 ); } } /* YUV444转YUV420(色度下采样) */ void yuv444_to_yuv420(unsigned char* yuv444_y, unsigned char* yuv444_u, unsigned char* yuv444_v, int width, int height, unsigned char* yuv420_y, unsigned char* yuv420_u, unsigned char* yuv420_v) { // 复制Y分量 memcpy(yuv420_y, yuv444_y, width * height); // UV下采样(取平均值) int uv_index = 0; for (int y = 0; y < height; y += 2) { for (int x = 0; x < width; x += 2) { int idx = y * width + x; yuv420_u[uv_index] = (yuv444_u[idx] + yuv444_u[idx+1] + yuv444_u[idx+width] + yuv444_u[idx+width+1]) / 4; yuv420_v[uv_index] = (yuv444_v[idx] + yuv444_v[idx+1] + yuv444_v[idx+width] + yuv444_v[idx+width+1]) / 4; uv_index++; } } } /* 处理单个JPEG文件 */ void process_jpg(const char* input_path, const char* output_dir) { // 读取JPEG到RGB888 int width, height, channels; unsigned char* rgb = stbi_load(input_path, &width, &height, &channels, 3); if (!rgb || (width % 2 != 0) || (height % 2 != 0)) { printf("Error loading %s\n", input_path); return; } // 分配内存 unsigned char* yuv444_y = malloc(width * height); unsigned char* yuv444_u = malloc(width * height); unsigned char* yuv444_v = malloc(width * height); unsigned char* yuv420_y = malloc(width * height); unsigned char* yuv420_u = malloc((width/2) * (height/2)); unsigned char* yuv420_v = malloc((width/2) * (height/2)); // 转换处理 rgb2yuv444(rgb, width, height, yuv444_y, yuv444_u, yuv444_v); yuv444_to_yuv420(yuv444_y, yuv444_u, yuv444_v, width, height, yuv420_y, yuv420_u, yuv420_v); // 保存YUV420文件 char output_path[256]; snprintf(output_path, sizeof(output_path), "%s/output_%dx%d.yuv", output_dir, width, height); FILE* fp = fopen(output_path, "wb"); fwrite(yuv420_y, 1, width*height, fp); fwrite(yuv420_u, 1, (width/2)*(height/2), fp); fwrite(yuv420_v, 1, (width/2)*(height/2), fp); fclose(fp); // 释放资源 stbi_image_free(rgb); free(yuv444_y); free(yuv444_u); free(yuv444_v); free(yuv420_y); free(yuv420_u); free(yuv420_v); } /* 批量处理函数 */ void batch_process(const char* input_dir, const char* output_dir) { DIR *dir; struct dirent *ent; if ((dir = opendir(input_dir)) != NULL) { while ((ent = readdir(dir)) != NULL) { if (ent->d_type == DT_REG && strstr(ent->d_name, ".jpg") != NULL) { char path[256]; snprintf(path, sizeof(path), "%s/%s", input_dir, ent->d_name); process_jpg(path, output_dir); } } closedir(dir); } } int main() { batch_process("./input_images", "./output_yuv"); return 0; } ``` **关键注意事项**: 1. **图像尺寸要求**:输入图像的宽高必须是偶数(YUV420的基本要求) 2. **性能优化**:可通过以下方式优化 - 使用SIMD指令加速颜色转换 - 多线程处理批量任务 3. **内存管理**:每次处理完文件后必须及时释放内存 4. **错误处理**:建议增加以下检查 ```c if (channels < 3) { printf("Error: Input image must be RGB format\n"); return; } ``` **验证方法**: 1. 使用FFmpeg验证输出文件: ```bash ffplay -video_size 1920x1080 -pixel_format yuv420p output.yuv ``` 2. 使用二进制查看工具检查文件头 **扩展功能建议**: - 添加日志系统记录处理状态 - 支持更多图像格式(PNG/BMP) - 实现反向转换(YUV420→RGB)进行闭环验证 这个实现方案在保证基本功能的前提下,尽可能考虑了内存安全和跨平台特性。实际部署时建议根据具体硬件环境进行性能优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值