【论文阅读】Zero-Resource Knowledge-Grounded Dialogue Generation

该论文提出在零资源环境下,通过双潜变量模型解决知识型对话生成问题,无需context-knowledge-response数据。模型利用变分学习方法,结合检索模型和transformer,有效利用外部知识生成响应。实验表明,即使没有特定训练数据,模型也能在多个基准上展现出与基于知识的对话模型相当的性能和良好的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Zero-Resource Knowledge-Grounded Dialogue Generation

论文:https://arxiv.org/abs/2008.12918

代码:https://github.com/nlpxucan/ZRKGC

任务

神经网络对话模型需要以知识为基础的对话,而这些对话很难获得。为了克服数据方面的挑战并降低构建知识基础对话系统的成本,本文通过假设训练时不需要context-knowledge-response三要素,在零资源环境下探索这个问题。

贡献:

  • 在零资源环境下探索以知识为基础的对话生成;
  • 提出了一个double latent variable model,不仅描述了连接context和response的知识,还描述了知识的表达方式;
  • 提出了一个variational学习方法;
  • 在知识为基础的对话生成的三个基准上对所提方法的有效性进行了经验验证。

方法(模型)

本文提出将连接context 和response的知识以及知识的表达方式表现为潜在变量,并设计了一种variational方法,可以有效地从对话语料和知识语料中估计出一个相互独立的生成模型。

在预训练的语言模型的基础上建立概率模型。不使用生成模型,而是建议用一个检索模型来实例化后验,在这个模型中,知识的搜索空间被限制在几个相关的候选之内。

dialogue corpus:
D c o v = { ( C i , R i ) } i = 1 n D_{cov}= \{(C_i, R_i)\}^n_{i=1} Dcov={ (Ci,Ri)}i=1n

C i C_i Ci

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没有胡子的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值