某 SCOI 模拟赛 T2 二叉树(tree)【括号序列 容斥】

该博客探讨了一种特殊的二叉树——k连树,并解释如何通过满二叉树和括号序列的概念解决特定的计数问题。博主分析了不允许超过特定深度的满二叉树的计数策略,涉及到卡特兰数、01序列和儿子有序的有根树。他们提出将问题转换为折线路径问题并应用容斥原理来计算符合条件的树的数量,同时提供了O(n)时间复杂度的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

称非叶节点都有两个儿子的二叉树为满二叉树。称恰有 k k k 个叶节点且任意节点的右儿子为均为叶节点的满二叉树为 k k k 连树。

记二叉树 A A A 包含 B B B 当且仅当 A A A 能通过若干次以下操作变成 B B B

  • 删除某个节点的两个子树;
  • x x x y y y 的儿子,用 x x x 的两颗子树代替 y y y 的两棵子树。

问:有多少满二叉树叶子个数为 n n n,且不包含 m m m 连树。答案模 998244353 998244353 998244353 n , m ≤ 1 0 7 n,m\leq 10^7 n,m107,2s。

题解

一见满二叉树的个数,立刻想到卡特兰数,立刻想到 01 序列(括号序列),立刻想到儿子有序的有根树数量,中国人的想像惟在这一层能够如此跃进 然后发现不包含 m m m 连树的满二叉树对应出来的有根树深度不超过 m − 1 m-1 m1,然后就推不动了……

满二叉树怎么对应上括号序列上面有链接

下面的 n n n 代表原题中的 2 n − 2 2n-2 2n2(括号序列的长度), m m m 代表原题中的 m − 1 m-1 m1

对于括号序列的计数,一个十分常见的套路是将它转化为折线:( 向右上方走,) 向右下方走,要求不能越过 y = 0 y=0 y=0,最后到达 ( n , 0 ) (n,0) (n,0)。该题中还不允许越过 y = m y=m y=m

只要求不越过 y = 0 y=0 y=0 的经典做法为:先忽略限制,总方案数是 ( n n / 2 ) n \choose n/2 (n/2n);考虑所有越过了 y = 0 y=0 y=0 的方案,在折线第一次碰到 y = − 1 y=-1 y=1 的时候将后半部分关于 y = − 1 y=-1 y=1 翻折,终点会落在 ( n , − 2 ) (n,-2) (n,2),于是减去 ( n , − 2 ) (n,-2) (n,2) 为终点的方案数。

考虑 y = m y=m y=m 的限制时类似,容斥时考虑四类折线:

  • − 1 → m + 1 ⋯ − 1 → m + 1 -1\to m+1\dots -1\to m+1 1m+11m+1
  • m + 1 → − 1 … m + 1 → − 1 m+1\to -1\dots m+1\to -1 m+11m+11
  • − 1 → m + 1 ⋯ − 1 -1\to m+1\dots -1 1m+11
  • − 1 → m + 1 … m + 1 -1\to m+1\dots m+1 1m+1m+1

各自考虑反复翻折后终点落到哪里,将方案数各自乘上合适的容斥系数。

时间复杂度 O ( n ) O(n) O(n)

代码:

#include<bits/stdc++.h>
using namespace std;
int getint(){
	int ans=0,f=1;
	char c=getchar();
	while(c<'0'&&c>'9'){
		if(c=='-')f=-1;
		c=getchar();
	}
	while(c>='0'&&c<='9'){
		ans=ans*10+c-'0';
		c=getchar(); 
	} 
	return ans*f;
}
const int N=1e7+10,mod=998244353;
int fac[N<<1],ifac[N<<1];
int C(int n,int m){
	if(m<0||m>n)return 0;
	return fac[n]*1ll*ifac[n-m]%mod*ifac[m]%mod;
}
int calc(int x,int y){
	return C(x,x/2+y/2);
}
int main(){
	int n=getint(),m=getint();n=(n-1)*2,m=m-1; 
	fac[0]=1;for(int i=1;i<=n;i++)fac[i]=fac[i-1]*1ll*i%mod;
	ifac[0]=ifac[1]=1;for(int i=2;i<=n;i++)ifac[i]=((mod-mod/i)*1ll*ifac[mod%i])%mod;
	for(int i=1;i<=n;i++)ifac[i]=ifac[i-1]*1ll*ifac[i]%mod;
	int ans=-calc(n,0);//(-1 ~ m-1)*0 与 (m-1 ~ -1)*0 会被重复算 
	for(int i=0;i<=n;i+=2*m+2){
		ans=(ans+2ll*calc(n,i)/*(-1 ~ m-1)*x | (m-1 ~ -1)*x*/
				-calc(n,-i-2)/*(-1 ~ m-1)*x ~ -1*/
				-calc(n,i+m*2)/*(m-1 ~ -1)*x ~ m-1*/)%mod;
	}
	cout<<(ans+mod)%mod<<endl;
	return 0;
}

### 关于 SCOI2009 WINDY 数的解法 #### 定义与问题描述 WINDY数是指对于任意两个相邻位置上的数字,它们之间的差至少为\(2\)。给定正整数区间\([L, R]\),计算该范围内有多少个WINDY数。 #### 动态规划方法解析 为了高效解决这个问题,可以采用动态规划的方法来处理。定义状态`dp[i][j]`表示长度为`i`且最高位是`j`的WINDY数的数量[^3]。 - **初始化** 对于单个数字的情况(即只有一位),显然每一位都可以单独构成一个合法的WINDY数,因此有: ```cpp dp[1][d] = 1; // d ∈ {0, 1,...,9} ``` - **状态转移方程** 当考虑多位数时,如果当前位选择了某个特定数值,则下一位的选择会受到限制——它必须满足与前一位相差不小于2的要求。具体来说就是当上一高位为`pre`时,当前位置可选范围取决于`pre`的具体取值: - 如果`pre >= 2`, 则可以选择`{0... pre-2}` - 否则只能从剩余的有效集合中选取 这样就可以通过遍历所有可能的状态来进行状态间的转换并累加结果。 - **边界条件处理** 特殊情况下需要注意的是,在实际应用过程中还需要考虑到给出区间的上下限约束。可以通过逐位比较的方式判断是否越界,并据此调整有效状态空间大小。 ```cpp // 计算不超过num的最大windy数数量 int calc(int num){ int f[15], g[15]; memset(f, 0, sizeof(f)); string s = to_string(num); n = s.size(); for (char c : s) { a[++len] = c - '0'; } // 初始化f数组 for (int i=0;i<=9;++i)f[1][i]=1; // DP过程省略... return sum; } long long solve(long long L,long long R){ return calc(R)-calc(L-1); } ``` 此代码片段展示了如何利用预处理好的`dp`表快速查询指定范围内的WINDY数总量。其中`solve()`函数用于返回闭区间\[L,R\]内符合条件的总数;而辅助函数`calc()`负责根据传入参数构建相应的状态序列并最终得出答案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值