自研AI生成,仅供参考
数模AI智能体扣子是新一代 AI 大模型智能体开发平台。整合了插件、长短期记忆、工作流、卡片等丰富能力,扣子能帮你低门槛、快速搭建个性化或具备商业价值的智能体,并发布到豆包、飞书等各个平台。https://www.coze.cn/search/nhasmj_xpg?entityType=1
每日学习一道数模题-全部文件下载https://pan.baidu.com/s/1Zb9ckMq3sIMejrpCVFmY2A?pwd=1234
问题重述
摘要
本文围绕塔式太阳能光热发电站定日镜场的优化设计展开,在给定地理及设计参数条件下,构建数学模型并求解,以实现定日镜场性能的量化分析与参数优化。首先,针对给定定日镜场参数的情况,构建计算模型并采用“时空分块并行计算 + KD树加速遮挡检测”算法求解,得出年平均光学效率、年平均输出热功率等指标。接着,在额定功率为60MW且定日镜尺寸及安装高度相同的条件下,建立基于克里金模型和混合整数规划的优化模型,运用基于代理模型的混合整数优化算法进行求解,得到满足条件的定日镜场设计参数。最后,在定日镜尺寸和安装高度可差异化的情况下,构建分层多目标强化学习模型,通过分层多目标强化学习算法优化定日镜场参数。
针对问题一,核心是在已知吸收塔位置、定日镜尺寸及位置等参数下,计算定日镜场相关性能指标。通过分析,确定以每月21日的5个特定时刻为计算点,先计算太阳位置参数,再得出法向直接辐射辐照度(DNI),进而分解计算光学效率各部分,累加单镜输出功率得到全场输出功率,最后求年平均值。模型建立采用“时空分块并行计算 + KD树加速遮挡检测”算法,在假设太阳光线、镜面反射率等条件基础上,定义核心变量并明确约束条件,推导出完整数学模型,并通过时空分块、KD树加速等策略实现算法优化。求解时,运用该算法,依据给定数据,经数据预处理、时空分块并行计算准备等10个具体步骤,得出定日镜场的年平均光学效率、年平均输出热功率以及单位面积年平均输出功率。
针对问题二,要求在额定功率为60MW且定日镜规格统一的条件下,优化定日镜场参数以最大化单位镜面面积年平均输出热功率。经分析,明确输出热功率受DNI、定日镜面积及光学效率等因素影响,需在各因素间寻找平衡并满足布局约束。模型建立使用克里金模型和混合整数规划(MIO)算法,假设定日镜布局、太阳光线等条件,定义吸收塔位置、定日镜尺寸等核心变量,确定镜场范围、额定功率等约束条件,构建以最大化单位面积年平均输出热功率为目标函数的完整数学模型。求解时,采用基于代理模型的混合整数优化算法,准备太阳、定日镜等相关数据,经数据准备、代理模型训练、MIO求解、验证与调整4个步骤,得出满足额定功率且单位面积输出功率最大的定日镜场设计参数。
针对问题三,旨在定日镜尺寸和安装高度可不同且额定功率≥60MW的条件下,最大化单位面积输出功率。经分析,根据定日镜与吸收塔距离不同导致的光学环境差异,对定日镜进行差异化设计可提升整体效率。模型建立采用分层多目标强化学习算法,假设太阳光线、镜面反射率等条件,定义吸收塔位置、区域划分参数等核心变量,明确镜场范围、额定功率等约束条件,构建以最大化单位镜面面积年平均输出热功率为目标函数的数学模型,并给出分层多目标强化学习模型的状态空间、动作空间和奖励函数。求解时,运用分层多目标强化学习算法,给定相关数据及参数,经初始化、计算高层状态等9个步骤,得出优化后的吸收塔位置、定日镜参数以及年平均输出热功率等结果。
最后,本文所建立的模型在定日镜场优化设计方面取得了较好效果,能够有效计算定日镜场性能指标并优化设计参数。但模型也存在一定局限性,如对太阳光线、大气透射率等因素的假设较为简化,可能与实际情况存在偏差。未来可考虑更多实际影响因素,如大气成分变化、镜面老化对反射率的影响等,进一步改进模型。同时,模型在其他类似太阳能光热发电站的定日镜场设计中具有一定推广应用价值,可根据不同地理条件和设计要求进行参数调整和优化。
关键词:塔式太阳能光热发电;定日镜场;光学效率;输出热功率;优化设计